# Copyright (c) Alibaba, Inc. and its affiliates. import os.path as osp import tempfile import unittest import cv2 import numpy as np from modelscope.fileio import File from modelscope.msdatasets import MsDataset from modelscope.outputs import OutputKeys from modelscope.pipelines import pipeline from modelscope.utils.constant import ModelFile, Tasks from modelscope.utils.test_utils import test_level class FaceDetectionTest(unittest.TestCase): def setUp(self) -> None: self.model_id = 'damo/cv_resnet_facedetection_scrfd10gkps' def show_result(self, img_path, bboxes, kpss, scores): bboxes = np.array(bboxes) kpss = np.array(kpss) scores = np.array(scores) img = cv2.imread(img_path) assert img is not None, f"Can't read img: {img_path}" for i in range(len(scores)): bbox = bboxes[i].astype(np.int32) kps = kpss[i].reshape(-1, 2).astype(np.int32) score = scores[i] x1, y1, x2, y2 = bbox cv2.rectangle(img, (x1, y1), (x2, y2), (255, 0, 0), 2) for kp in kps: cv2.circle(img, tuple(kp), 1, (0, 0, 255), 1) cv2.putText( img, f'{score:.2f}', (x1, y2), 1, 1.0, (0, 255, 0), thickness=1, lineType=8) cv2.imwrite('result.png', img) print( f'Found {len(scores)} faces, output written to {osp.abspath("result.png")}' ) @unittest.skipUnless(test_level() >= 1, 'skip test in current test level') def test_run_with_dataset(self): input_location = ['data/test/images/face_detection.png'] # alternatively: # input_location = '/dir/to/images' dataset = MsDataset.load(input_location, target='image') face_detection = pipeline(Tasks.face_detection, model=self.model_id) # note that for dataset output, the inference-output is a Generator that can be iterated. result = face_detection(dataset) result = next(result) self.show_result(input_location[0], result[OutputKeys.BOXES], result[OutputKeys.KEYPOINTS], result[OutputKeys.SCORES]) @unittest.skipUnless(test_level() >= 0, 'skip test in current test level') def test_run_modelhub(self): face_detection = pipeline(Tasks.face_detection, model=self.model_id) img_path = 'data/test/images/face_detection.png' result = face_detection(img_path) self.show_result(img_path, result[OutputKeys.BOXES], result[OutputKeys.KEYPOINTS], result[OutputKeys.SCORES]) @unittest.skipUnless(test_level() >= 2, 'skip test in current test level') def test_run_modelhub_default_model(self): face_detection = pipeline(Tasks.face_detection) img_path = 'data/test/images/face_detection.png' result = face_detection(img_path) self.show_result(img_path, result[OutputKeys.BOXES], result[OutputKeys.KEYPOINTS], result[OutputKeys.SCORES]) if __name__ == '__main__': unittest.main()