mirror of
https://github.com/n00mkrad/flowframes.git
synced 2025-12-16 16:37:48 +01:00
Updated RIFE-CUDA to RIFE 2.0
This commit is contained in:
@@ -624,6 +624,7 @@ namespace Flowframes.IO
|
||||
Directory.CreateDirectory(path);
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
@@ -91,9 +91,12 @@ class IFNet(nn.Module):
|
||||
self.block2 = IFBlock(8, scale=2, c=96)
|
||||
self.block3 = IFBlock(8, scale=1, c=48)
|
||||
|
||||
def forward(self, x):
|
||||
x = F.interpolate(x, scale_factor=0.5, mode="bilinear",
|
||||
align_corners=False)
|
||||
def forward(self, x, UHD=False):
|
||||
if UHD:
|
||||
x = F.interpolate(x, scale_factor=0.25, mode="bilinear", align_corners=False)
|
||||
else:
|
||||
x = F.interpolate(x, scale_factor=0.5, mode="bilinear",
|
||||
align_corners=False)
|
||||
flow0 = self.block0(x)
|
||||
F1 = flow0
|
||||
warped_img0 = warp(x[:, :3], F1)
|
||||
|
||||
@@ -204,7 +204,7 @@ class Model:
|
||||
def inference(self, img0, img1):
|
||||
imgs = torch.cat((img0, img1), 1)
|
||||
flow, _ = self.flownet(imgs)
|
||||
return self.predict(imgs, flow, training=False).detach()
|
||||
return self.predict(imgs, flow, training=False)
|
||||
|
||||
def update(self, imgs, gt, learning_rate=0, mul=1, training=True, flow_gt=None):
|
||||
for param_group in self.optimG.param_groups:
|
||||
|
||||
@@ -204,7 +204,7 @@ class Model:
|
||||
with torch.no_grad():
|
||||
imgs = torch.cat((img0, img1), 1)
|
||||
flow, _ = self.flownet(imgs)
|
||||
return self.predict(imgs, flow, training=False).detach()
|
||||
return self.predict(imgs, flow, training=False)
|
||||
|
||||
def update(self, imgs, gt, learning_rate=0, mul=1, training=True, flow_gt=None):
|
||||
for param_group in self.optimG.param_groups:
|
||||
|
||||
@@ -209,10 +209,10 @@ class Model:
|
||||
else:
|
||||
return pred
|
||||
|
||||
def inference(self, img0, img1, K=False):
|
||||
def inference(self, img0, img1, UHD=False):
|
||||
imgs = torch.cat((img0, img1), 1)
|
||||
flow, _ = self.flownet(imgs)
|
||||
return self.predict(imgs, flow, training=False).detach()
|
||||
flow, _ = self.flownet(imgs, UHD)
|
||||
return self.predict(imgs, flow, training=False, UHD=UHD)
|
||||
|
||||
def update(self, imgs, gt, learning_rate=0, mul=1, training=True, flow_gt=None):
|
||||
for param_group in self.optimG.param_groups:
|
||||
|
||||
115
pkgs/rife-cuda/model/IFNet2F15C.py
Normal file
115
pkgs/rife-cuda/model/IFNet2F15C.py
Normal file
@@ -0,0 +1,115 @@
|
||||
import torch
|
||||
import numpy as np
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from model.warplayer import warp
|
||||
|
||||
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
|
||||
def conv_wo_act(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
|
||||
return nn.Sequential(
|
||||
nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
|
||||
padding=padding, dilation=dilation, bias=False),
|
||||
nn.BatchNorm2d(out_planes),
|
||||
)
|
||||
|
||||
|
||||
def conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
|
||||
return nn.Sequential(
|
||||
nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
|
||||
padding=padding, dilation=dilation, bias=False),
|
||||
nn.BatchNorm2d(out_planes),
|
||||
nn.PReLU(out_planes)
|
||||
)
|
||||
|
||||
|
||||
class ResBlock(nn.Module):
|
||||
def __init__(self, in_planes, out_planes, stride=1):
|
||||
super(ResBlock, self).__init__()
|
||||
if in_planes == out_planes and stride == 1:
|
||||
self.conv0 = nn.Identity()
|
||||
else:
|
||||
self.conv0 = nn.Conv2d(in_planes, out_planes,
|
||||
3, stride, 1, bias=False)
|
||||
self.conv1 = conv(in_planes, out_planes, 3, stride, 1)
|
||||
self.conv2 = conv_wo_act(out_planes, out_planes, 3, 1, 1)
|
||||
self.relu1 = nn.PReLU(1)
|
||||
self.relu2 = nn.PReLU(out_planes)
|
||||
self.fc1 = nn.Conv2d(out_planes, 16, kernel_size=1, bias=False)
|
||||
self.fc2 = nn.Conv2d(16, out_planes, kernel_size=1, bias=False)
|
||||
|
||||
def forward(self, x):
|
||||
y = self.conv0(x)
|
||||
x = self.conv1(x)
|
||||
x = self.conv2(x)
|
||||
w = x.mean(3, True).mean(2, True)
|
||||
w = self.relu1(self.fc1(w))
|
||||
w = torch.sigmoid(self.fc2(w))
|
||||
x = self.relu2(x * w + y)
|
||||
return x
|
||||
|
||||
|
||||
class IFBlock(nn.Module):
|
||||
def __init__(self, in_planes, scale=1, c=64):
|
||||
super(IFBlock, self).__init__()
|
||||
self.scale = scale
|
||||
self.conv0 = conv(in_planes, c, 3, 1, 1)
|
||||
self.res0 = ResBlock(c, c)
|
||||
self.res1 = ResBlock(c, c)
|
||||
self.res2 = ResBlock(c, c)
|
||||
self.res3 = ResBlock(c, c)
|
||||
self.res4 = ResBlock(c, c)
|
||||
self.res5 = ResBlock(c, c)
|
||||
self.conv1 = nn.Conv2d(c, 2, 3, 1, 1)
|
||||
self.up = nn.PixelShuffle(2)
|
||||
|
||||
def forward(self, x):
|
||||
if self.scale != 1:
|
||||
x = F.interpolate(x, scale_factor=1. / self.scale, mode="bilinear",
|
||||
align_corners=False)
|
||||
x = self.conv0(x)
|
||||
x = self.res0(x)
|
||||
x = self.res1(x)
|
||||
x = self.res2(x)
|
||||
x = self.res3(x)
|
||||
x = self.res4(x)
|
||||
x = self.res5(x)
|
||||
x = self.conv1(x)
|
||||
flow = x # self.up(x)
|
||||
if self.scale != 1:
|
||||
flow = F.interpolate(flow, scale_factor=self.scale, mode="bilinear",
|
||||
align_corners=False)
|
||||
return flow
|
||||
|
||||
|
||||
class IFNet(nn.Module):
|
||||
def __init__(self):
|
||||
super(IFNet, self).__init__()
|
||||
self.block0 = IFBlock(6, scale=4, c=288)
|
||||
self.block1 = IFBlock(8, scale=2, c=192)
|
||||
self.block2 = IFBlock(8, scale=1, c=96)
|
||||
|
||||
def forward(self, x):
|
||||
x = F.interpolate(x, scale_factor=0.5, mode="bilinear",
|
||||
align_corners=False)
|
||||
flow0 = self.block0(x)
|
||||
F1 = flow0
|
||||
warped_img0 = warp(x[:, :3], F1)
|
||||
warped_img1 = warp(x[:, 3:], -F1)
|
||||
flow1 = self.block1(torch.cat((warped_img0, warped_img1, F1), 1))
|
||||
F2 = (flow0 + flow1)
|
||||
warped_img0 = warp(x[:, :3], F2)
|
||||
warped_img1 = warp(x[:, 3:], -F2)
|
||||
flow2 = self.block2(torch.cat((warped_img0, warped_img1, F2), 1))
|
||||
F3 = (flow0 + flow1 + flow2)
|
||||
return F3, [F1, F2, F3]
|
||||
|
||||
if __name__ == '__main__':
|
||||
img0 = torch.zeros(3, 3, 256, 256).float().to(device)
|
||||
img1 = torch.tensor(np.random.normal(
|
||||
0, 1, (3, 3, 256, 256))).float().to(device)
|
||||
imgs = torch.cat((img0, img1), 1)
|
||||
flownet = IFNet()
|
||||
flow, _ = flownet(imgs)
|
||||
print(flow.shape)
|
||||
93
pkgs/rife-cuda/model/IFNet_HDv2.py
Normal file
93
pkgs/rife-cuda/model/IFNet_HDv2.py
Normal file
@@ -0,0 +1,93 @@
|
||||
import torch
|
||||
import numpy as np
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from model.warplayer import warp
|
||||
|
||||
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
|
||||
def conv_wo_act(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
|
||||
return nn.Sequential(
|
||||
nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
|
||||
padding=padding, dilation=dilation, bias=True),
|
||||
)
|
||||
|
||||
|
||||
def conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
|
||||
return nn.Sequential(
|
||||
nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
|
||||
padding=padding, dilation=dilation, bias=True),
|
||||
nn.PReLU(out_planes)
|
||||
)
|
||||
|
||||
class IFBlock(nn.Module):
|
||||
def __init__(self, in_planes, scale=1, c=64):
|
||||
super(IFBlock, self).__init__()
|
||||
self.scale = scale
|
||||
self.conv0 = nn.Sequential(
|
||||
conv(in_planes, c, 3, 2, 1),
|
||||
conv(c, 2*c, 3, 2, 1),
|
||||
)
|
||||
self.convblock = nn.Sequential(
|
||||
conv(2*c, 2*c),
|
||||
conv(2*c, 2*c),
|
||||
conv(2*c, 2*c),
|
||||
conv(2*c, 2*c),
|
||||
conv(2*c, 2*c),
|
||||
conv(2*c, 2*c),
|
||||
)
|
||||
self.conv1 = nn.ConvTranspose2d(2*c, 4, 4, 2, 1)
|
||||
|
||||
def forward(self, x):
|
||||
if self.scale != 1:
|
||||
x = F.interpolate(x, scale_factor=1. / self.scale, mode="bilinear",
|
||||
align_corners=False)
|
||||
x = self.conv0(x)
|
||||
x = self.convblock(x)
|
||||
x = self.conv1(x)
|
||||
flow = x
|
||||
if self.scale != 1:
|
||||
flow = F.interpolate(flow, scale_factor=self.scale, mode="bilinear",
|
||||
align_corners=False)
|
||||
return flow
|
||||
|
||||
|
||||
class IFNet(nn.Module):
|
||||
def __init__(self):
|
||||
super(IFNet, self).__init__()
|
||||
self.block0 = IFBlock(6, scale=8, c=192)
|
||||
self.block1 = IFBlock(10, scale=4, c=128)
|
||||
self.block2 = IFBlock(10, scale=2, c=96)
|
||||
self.block3 = IFBlock(10, scale=1, c=48)
|
||||
|
||||
def forward(self, x, UHD=False):
|
||||
if UHD:
|
||||
x = F.interpolate(x, scale_factor=0.5, mode="bilinear", align_corners=False)
|
||||
flow0 = self.block0(x)
|
||||
F1 = flow0
|
||||
F1_large = F.interpolate(F1, scale_factor=2.0, mode="bilinear", align_corners=False, recompute_scale_factor=False) * 2.0
|
||||
warped_img0 = warp(x[:, :3], F1_large[:, :2])
|
||||
warped_img1 = warp(x[:, 3:], F1_large[:, 2:4])
|
||||
flow1 = self.block1(torch.cat((warped_img0, warped_img1, F1_large), 1))
|
||||
F2 = (flow0 + flow1)
|
||||
F2_large = F.interpolate(F2, scale_factor=2.0, mode="bilinear", align_corners=False, recompute_scale_factor=False) * 2.0
|
||||
warped_img0 = warp(x[:, :3], F2_large[:, :2])
|
||||
warped_img1 = warp(x[:, 3:], F2_large[:, 2:4])
|
||||
flow2 = self.block2(torch.cat((warped_img0, warped_img1, F2_large), 1))
|
||||
F3 = (flow0 + flow1 + flow2)
|
||||
F3_large = F.interpolate(F3, scale_factor=2.0, mode="bilinear", align_corners=False, recompute_scale_factor=False) * 2.0
|
||||
warped_img0 = warp(x[:, :3], F3_large[:, :2])
|
||||
warped_img1 = warp(x[:, 3:], F3_large[:, 2:4])
|
||||
flow3 = self.block3(torch.cat((warped_img0, warped_img1, F3_large), 1))
|
||||
F4 = (flow0 + flow1 + flow2 + flow3)
|
||||
return F4, [F1, F2, F3, F4]
|
||||
|
||||
if __name__ == '__main__':
|
||||
img0 = torch.zeros(3, 3, 256, 256).float().to(device)
|
||||
img1 = torch.tensor(np.random.normal(
|
||||
0, 1, (3, 3, 256, 256))).float().to(device)
|
||||
imgs = torch.cat((img0, img1), 1)
|
||||
flownet = IFNet()
|
||||
flow, _ = flownet(imgs)
|
||||
print(flow.shape)
|
||||
250
pkgs/rife-cuda/model/RIFE2F15C.py
Normal file
250
pkgs/rife-cuda/model/RIFE2F15C.py
Normal file
@@ -0,0 +1,250 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import numpy as np
|
||||
from torch.optim import AdamW
|
||||
import torch.optim as optim
|
||||
import itertools
|
||||
from model.warplayer import warp
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from model.IFNet2F15C import *
|
||||
import torch.nn.functional as F
|
||||
from model.loss import *
|
||||
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
|
||||
|
||||
def conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
|
||||
return nn.Sequential(
|
||||
nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
|
||||
padding=padding, dilation=dilation, bias=True),
|
||||
nn.PReLU(out_planes)
|
||||
)
|
||||
|
||||
|
||||
def deconv(in_planes, out_planes, kernel_size=4, stride=2, padding=1):
|
||||
return nn.Sequential(
|
||||
torch.nn.ConvTranspose2d(in_channels=in_planes, out_channels=out_planes,
|
||||
kernel_size=4, stride=2, padding=1, bias=True),
|
||||
nn.PReLU(out_planes)
|
||||
)
|
||||
|
||||
def conv_woact(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
|
||||
return nn.Sequential(
|
||||
nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
|
||||
padding=padding, dilation=dilation, bias=True),
|
||||
)
|
||||
|
||||
class ResBlock(nn.Module):
|
||||
def __init__(self, in_planes, out_planes, stride=2):
|
||||
super(ResBlock, self).__init__()
|
||||
if in_planes == out_planes and stride == 1:
|
||||
self.conv0 = nn.Identity()
|
||||
else:
|
||||
self.conv0 = nn.Conv2d(in_planes, out_planes,
|
||||
3, stride, 1, bias=False)
|
||||
self.conv1 = conv(in_planes, out_planes, 3, stride, 1)
|
||||
self.conv2 = conv_woact(out_planes, out_planes, 3, 1, 1)
|
||||
self.relu1 = nn.PReLU(1)
|
||||
self.relu2 = nn.PReLU(out_planes)
|
||||
self.fc1 = nn.Conv2d(out_planes, 16, kernel_size=1, bias=False)
|
||||
self.fc2 = nn.Conv2d(16, out_planes, kernel_size=1, bias=False)
|
||||
|
||||
def forward(self, x):
|
||||
y = self.conv0(x)
|
||||
x = self.conv1(x)
|
||||
x = self.conv2(x)
|
||||
w = x.mean(3, True).mean(2, True)
|
||||
w = self.relu1(self.fc1(w))
|
||||
w = torch.sigmoid(self.fc2(w))
|
||||
x = self.relu2(x * w + y)
|
||||
return x
|
||||
|
||||
c = 24
|
||||
|
||||
class ContextNet(nn.Module):
|
||||
def __init__(self):
|
||||
super(ContextNet, self).__init__()
|
||||
self.conv1 = ResBlock(3, c, 1)
|
||||
self.conv2 = ResBlock(c, 2*c)
|
||||
self.conv3 = ResBlock(2*c, 4*c)
|
||||
self.conv4 = ResBlock(4*c, 8*c)
|
||||
|
||||
def forward(self, x, flow):
|
||||
x = self.conv1(x)
|
||||
f1 = warp(x, flow)
|
||||
x = self.conv2(x)
|
||||
flow = F.interpolate(flow, scale_factor=0.5, mode="bilinear",
|
||||
align_corners=False) * 0.5
|
||||
f2 = warp(x, flow)
|
||||
x = self.conv3(x)
|
||||
flow = F.interpolate(flow, scale_factor=0.5, mode="bilinear",
|
||||
align_corners=False) * 0.5
|
||||
f3 = warp(x, flow)
|
||||
x = self.conv4(x)
|
||||
flow = F.interpolate(flow, scale_factor=0.5, mode="bilinear",
|
||||
align_corners=False) * 0.5
|
||||
f4 = warp(x, flow)
|
||||
return [f1, f2, f3, f4]
|
||||
|
||||
|
||||
class FusionNet(nn.Module):
|
||||
def __init__(self):
|
||||
super(FusionNet, self).__init__()
|
||||
self.down0 = ResBlock(8, 2*c, 1)
|
||||
self.down1 = ResBlock(4*c, 4*c)
|
||||
self.down2 = ResBlock(8*c, 8*c)
|
||||
self.down3 = ResBlock(16*c, 16*c)
|
||||
self.up0 = deconv(32*c, 8*c)
|
||||
self.up1 = deconv(16*c, 4*c)
|
||||
self.up2 = deconv(8*c, 2*c)
|
||||
self.up3 = deconv(4*c, c)
|
||||
self.conv = nn.Conv2d(c, 4, 3, 2, 1)
|
||||
|
||||
def forward(self, img0, img1, flow, c0, c1, flow_gt):
|
||||
warped_img0 = warp(img0, flow)
|
||||
warped_img1 = warp(img1, -flow)
|
||||
if flow_gt == None:
|
||||
warped_img0_gt, warped_img1_gt = None, None
|
||||
else:
|
||||
warped_img0_gt = warp(img0, flow_gt[:, :2])
|
||||
warped_img1_gt = warp(img1, flow_gt[:, 2:4])
|
||||
s0 = self.down0(torch.cat((warped_img0, warped_img1, flow), 1))
|
||||
s1 = self.down1(torch.cat((s0, c0[0], c1[0]), 1))
|
||||
s2 = self.down2(torch.cat((s1, c0[1], c1[1]), 1))
|
||||
s3 = self.down3(torch.cat((s2, c0[2], c1[2]), 1))
|
||||
x = self.up0(torch.cat((s3, c0[3], c1[3]), 1))
|
||||
x = self.up1(torch.cat((x, s2), 1))
|
||||
x = self.up2(torch.cat((x, s1), 1))
|
||||
x = self.up3(torch.cat((x, s0), 1))
|
||||
x = self.conv(x)
|
||||
return x, warped_img0, warped_img1, warped_img0_gt, warped_img1_gt
|
||||
|
||||
|
||||
class Model:
|
||||
def __init__(self, local_rank=-1):
|
||||
self.flownet = IFNet()
|
||||
self.contextnet = ContextNet()
|
||||
self.fusionnet = FusionNet()
|
||||
self.device()
|
||||
self.optimG = AdamW(itertools.chain(
|
||||
self.flownet.parameters(),
|
||||
self.contextnet.parameters(),
|
||||
self.fusionnet.parameters()), lr=1e-6, weight_decay=1e-5)
|
||||
self.schedulerG = optim.lr_scheduler.CyclicLR(
|
||||
self.optimG, base_lr=1e-6, max_lr=1e-3, step_size_up=8000, cycle_momentum=False)
|
||||
self.epe = EPE()
|
||||
self.ter = Ternary()
|
||||
self.sobel = SOBEL()
|
||||
if local_rank != -1:
|
||||
self.flownet = DDP(self.flownet, device_ids=[
|
||||
local_rank], output_device=local_rank)
|
||||
self.contextnet = DDP(self.contextnet, device_ids=[
|
||||
local_rank], output_device=local_rank)
|
||||
self.fusionnet = DDP(self.fusionnet, device_ids=[
|
||||
local_rank], output_device=local_rank)
|
||||
|
||||
def train(self):
|
||||
self.flownet.train()
|
||||
self.contextnet.train()
|
||||
self.fusionnet.train()
|
||||
|
||||
def eval(self):
|
||||
self.flownet.eval()
|
||||
self.contextnet.eval()
|
||||
self.fusionnet.eval()
|
||||
|
||||
def device(self):
|
||||
self.flownet.to(device)
|
||||
self.contextnet.to(device)
|
||||
self.fusionnet.to(device)
|
||||
|
||||
def load_model(self, path, rank=0):
|
||||
def convert(param):
|
||||
return {
|
||||
k.replace("module.", ""): v
|
||||
for k, v in param.items()
|
||||
if "module." in k
|
||||
}
|
||||
if rank == 0:
|
||||
self.flownet.load_state_dict(
|
||||
convert(torch.load('{}/flownet.pkl'.format(path), map_location=device)))
|
||||
self.contextnet.load_state_dict(
|
||||
convert(torch.load('{}/contextnet.pkl'.format(path), map_location=device)))
|
||||
self.fusionnet.load_state_dict(
|
||||
convert(torch.load('{}/unet.pkl'.format(path), map_location=device)))
|
||||
|
||||
def save_model(self, path, rank=0):
|
||||
if rank == 0:
|
||||
torch.save(self.flownet.state_dict(),
|
||||
'{}/flownet.pkl'.format(path))
|
||||
torch.save(self.contextnet.state_dict(),
|
||||
'{}/contextnet.pkl'.format(path))
|
||||
torch.save(self.fusionnet.state_dict(), '{}/unet.pkl'.format(path))
|
||||
|
||||
def predict(self, imgs, flow, training=True, flow_gt=None):
|
||||
img0 = imgs[:, :3]
|
||||
img1 = imgs[:, 3:]
|
||||
flow = F.interpolate(flow, scale_factor=2.0, mode="bilinear",
|
||||
align_corners=False) * 2.0
|
||||
c0 = self.contextnet(img0, flow)
|
||||
c1 = self.contextnet(img1, -flow)
|
||||
refine_output, warped_img0, warped_img1, warped_img0_gt, warped_img1_gt = self.fusionnet(
|
||||
img0, img1, flow, c0, c1, flow_gt)
|
||||
res = torch.sigmoid(refine_output[:, :3]) * 2 - 1
|
||||
mask = torch.sigmoid(refine_output[:, 3:4])
|
||||
merged_img = warped_img0 * mask + warped_img1 * (1 - mask)
|
||||
pred = merged_img + res
|
||||
pred = torch.clamp(pred, 0, 1)
|
||||
if training:
|
||||
return pred, mask, merged_img, warped_img0, warped_img1, warped_img0_gt, warped_img1_gt
|
||||
else:
|
||||
return pred
|
||||
|
||||
def inference(self, img0, img1):
|
||||
with torch.no_grad():
|
||||
imgs = torch.cat((img0, img1), 1)
|
||||
flow, _ = self.flownet(imgs)
|
||||
return self.predict(imgs, flow, training=False)
|
||||
|
||||
def update(self, imgs, gt, learning_rate=0, mul=1, training=True, flow_gt=None):
|
||||
for param_group in self.optimG.param_groups:
|
||||
param_group['lr'] = learning_rate
|
||||
if training:
|
||||
self.train()
|
||||
else:
|
||||
self.eval()
|
||||
flow, flow_list = self.flownet(imgs)
|
||||
pred, mask, merged_img, warped_img0, warped_img1, warped_img0_gt, warped_img1_gt = self.predict(
|
||||
imgs, flow, flow_gt=flow_gt)
|
||||
loss_ter = self.ter(pred, gt).mean()
|
||||
if training:
|
||||
with torch.no_grad():
|
||||
loss_flow = torch.abs(warped_img0_gt - gt).mean()
|
||||
loss_mask = torch.abs(
|
||||
merged_img - gt).sum(1, True).float().detach()
|
||||
loss_cons = 0
|
||||
for i in range(3):
|
||||
loss_cons += self.epe(flow_list[i], flow_gt[:, :2], 1)
|
||||
loss_cons += self.epe(-flow_list[i], flow_gt[:, 2:4], 1)
|
||||
loss_cons = loss_cons.mean() * 0.01
|
||||
else:
|
||||
loss_cons = torch.tensor([0])
|
||||
loss_flow = torch.abs(warped_img0 - gt).mean()
|
||||
loss_mask = 1
|
||||
loss_l1 = (((pred - gt) ** 2 + 1e-6) ** 0.5).mean()
|
||||
if training:
|
||||
self.optimG.zero_grad()
|
||||
loss_G = loss_l1 + loss_cons + loss_ter
|
||||
loss_G.backward()
|
||||
self.optimG.step()
|
||||
return pred, merged_img, flow, loss_l1, loss_flow, loss_cons, loss_ter, loss_mask
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
img0 = torch.zeros(3, 3, 256, 256).float().to(device)
|
||||
img1 = torch.tensor(np.random.normal(
|
||||
0, 1, (3, 3, 256, 256))).float().to(device)
|
||||
imgs = torch.cat((img0, img1), 1)
|
||||
model = Model()
|
||||
model.eval()
|
||||
print(model.inference(imgs).shape)
|
||||
247
pkgs/rife-cuda/model/RIFE_HDv2.py
Normal file
247
pkgs/rife-cuda/model/RIFE_HDv2.py
Normal file
@@ -0,0 +1,247 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import numpy as np
|
||||
from torch.optim import AdamW
|
||||
import torch.optim as optim
|
||||
import itertools
|
||||
from model.warplayer import warp
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from model.IFNet_HDv2 import *
|
||||
import torch.nn.functional as F
|
||||
from model.loss import *
|
||||
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
|
||||
|
||||
def conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
|
||||
return nn.Sequential(
|
||||
nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
|
||||
padding=padding, dilation=dilation, bias=True),
|
||||
nn.PReLU(out_planes)
|
||||
)
|
||||
|
||||
|
||||
def deconv(in_planes, out_planes, kernel_size=4, stride=2, padding=1):
|
||||
return nn.Sequential(
|
||||
torch.nn.ConvTranspose2d(in_channels=in_planes, out_channels=out_planes,
|
||||
kernel_size=4, stride=2, padding=1, bias=True),
|
||||
nn.PReLU(out_planes)
|
||||
)
|
||||
|
||||
def conv_woact(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
|
||||
return nn.Sequential(
|
||||
nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
|
||||
padding=padding, dilation=dilation, bias=True),
|
||||
)
|
||||
|
||||
class Conv2(nn.Module):
|
||||
def __init__(self, in_planes, out_planes, stride=2):
|
||||
super(Conv2, self).__init__()
|
||||
self.conv1 = conv(in_planes, out_planes, 3, stride, 1)
|
||||
self.conv2 = conv(out_planes, out_planes, 3, 1, 1)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv1(x)
|
||||
x = self.conv2(x)
|
||||
return x
|
||||
|
||||
c = 32
|
||||
|
||||
class ContextNet(nn.Module):
|
||||
def __init__(self):
|
||||
super(ContextNet, self).__init__()
|
||||
self.conv0 = Conv2(3, c)
|
||||
self.conv1 = Conv2(c, c)
|
||||
self.conv2 = Conv2(c, 2*c)
|
||||
self.conv3 = Conv2(2*c, 4*c)
|
||||
self.conv4 = Conv2(4*c, 8*c)
|
||||
|
||||
def forward(self, x, flow):
|
||||
x = self.conv0(x)
|
||||
x = self.conv1(x)
|
||||
flow = F.interpolate(flow, scale_factor=0.5, mode="bilinear", align_corners=False) * 0.5
|
||||
f1 = warp(x, flow)
|
||||
x = self.conv2(x)
|
||||
flow = F.interpolate(flow, scale_factor=0.5, mode="bilinear",
|
||||
align_corners=False) * 0.5
|
||||
f2 = warp(x, flow)
|
||||
x = self.conv3(x)
|
||||
flow = F.interpolate(flow, scale_factor=0.5, mode="bilinear",
|
||||
align_corners=False) * 0.5
|
||||
f3 = warp(x, flow)
|
||||
x = self.conv4(x)
|
||||
flow = F.interpolate(flow, scale_factor=0.5, mode="bilinear",
|
||||
align_corners=False) * 0.5
|
||||
f4 = warp(x, flow)
|
||||
return [f1, f2, f3, f4]
|
||||
|
||||
|
||||
class FusionNet(nn.Module):
|
||||
def __init__(self):
|
||||
super(FusionNet, self).__init__()
|
||||
self.conv0 = Conv2(10, c)
|
||||
self.down0 = Conv2(c, 2*c)
|
||||
self.down1 = Conv2(4*c, 4*c)
|
||||
self.down2 = Conv2(8*c, 8*c)
|
||||
self.down3 = Conv2(16*c, 16*c)
|
||||
self.up0 = deconv(32*c, 8*c)
|
||||
self.up1 = deconv(16*c, 4*c)
|
||||
self.up2 = deconv(8*c, 2*c)
|
||||
self.up3 = deconv(4*c, c)
|
||||
self.conv = nn.ConvTranspose2d(c, 4, 4, 2, 1)
|
||||
|
||||
def forward(self, img0, img1, flow, c0, c1, flow_gt):
|
||||
warped_img0 = warp(img0, flow[:, :2])
|
||||
warped_img1 = warp(img1, flow[:, 2:4])
|
||||
if flow_gt == None:
|
||||
warped_img0_gt, warped_img1_gt = None, None
|
||||
else:
|
||||
warped_img0_gt = warp(img0, flow_gt[:, :2])
|
||||
warped_img1_gt = warp(img1, flow_gt[:, 2:4])
|
||||
x = self.conv0(torch.cat((warped_img0, warped_img1, flow), 1))
|
||||
s0 = self.down0(x)
|
||||
s1 = self.down1(torch.cat((s0, c0[0], c1[0]), 1))
|
||||
s2 = self.down2(torch.cat((s1, c0[1], c1[1]), 1))
|
||||
s3 = self.down3(torch.cat((s2, c0[2], c1[2]), 1))
|
||||
x = self.up0(torch.cat((s3, c0[3], c1[3]), 1))
|
||||
x = self.up1(torch.cat((x, s2), 1))
|
||||
x = self.up2(torch.cat((x, s1), 1))
|
||||
x = self.up3(torch.cat((x, s0), 1))
|
||||
x = self.conv(x)
|
||||
return x, warped_img0, warped_img1, warped_img0_gt, warped_img1_gt
|
||||
|
||||
|
||||
class Model:
|
||||
def __init__(self, local_rank=-1):
|
||||
self.flownet = IFNet()
|
||||
self.contextnet = ContextNet()
|
||||
self.fusionnet = FusionNet()
|
||||
self.device()
|
||||
self.optimG = AdamW(itertools.chain(
|
||||
self.flownet.parameters(),
|
||||
self.contextnet.parameters(),
|
||||
self.fusionnet.parameters()), lr=1e-6, weight_decay=1e-5)
|
||||
self.schedulerG = optim.lr_scheduler.CyclicLR(
|
||||
self.optimG, base_lr=1e-6, max_lr=1e-3, step_size_up=8000, cycle_momentum=False)
|
||||
self.epe = EPE()
|
||||
self.ter = Ternary()
|
||||
self.sobel = SOBEL()
|
||||
if local_rank != -1:
|
||||
self.flownet = DDP(self.flownet, device_ids=[
|
||||
local_rank], output_device=local_rank)
|
||||
self.contextnet = DDP(self.contextnet, device_ids=[
|
||||
local_rank], output_device=local_rank)
|
||||
self.fusionnet = DDP(self.fusionnet, device_ids=[
|
||||
local_rank], output_device=local_rank)
|
||||
|
||||
def train(self):
|
||||
self.flownet.train()
|
||||
self.contextnet.train()
|
||||
self.fusionnet.train()
|
||||
|
||||
def eval(self):
|
||||
self.flownet.eval()
|
||||
self.contextnet.eval()
|
||||
self.fusionnet.eval()
|
||||
|
||||
def device(self):
|
||||
self.flownet.to(device)
|
||||
self.contextnet.to(device)
|
||||
self.fusionnet.to(device)
|
||||
|
||||
def load_model(self, path, rank):
|
||||
def convert(param):
|
||||
if rank == -1:
|
||||
return {
|
||||
k.replace("module.", ""): v
|
||||
for k, v in param.items()
|
||||
if "module." in k
|
||||
}
|
||||
else:
|
||||
return param
|
||||
if rank <= 0:
|
||||
self.flownet.load_state_dict(
|
||||
convert(torch.load('{}/flownet.pkl'.format(path), map_location=device)))
|
||||
self.contextnet.load_state_dict(
|
||||
convert(torch.load('{}/contextnet.pkl'.format(path), map_location=device)))
|
||||
self.fusionnet.load_state_dict(
|
||||
convert(torch.load('{}/unet.pkl'.format(path), map_location=device)))
|
||||
|
||||
def save_model(self, path, rank):
|
||||
if rank == 0:
|
||||
torch.save(self.flownet.state_dict(), '{}/flownet.pkl'.format(path))
|
||||
torch.save(self.contextnet.state_dict(), '{}/contextnet.pkl'.format(path))
|
||||
torch.save(self.fusionnet.state_dict(), '{}/unet.pkl'.format(path))
|
||||
|
||||
def predict(self, imgs, flow, training=True, flow_gt=None, UHD=False):
|
||||
img0 = imgs[:, :3]
|
||||
img1 = imgs[:, 3:]
|
||||
if UHD:
|
||||
flow = F.interpolate(flow, scale_factor=2.0, mode="bilinear", align_corners=False) * 2.0
|
||||
c0 = self.contextnet(img0, flow[:, :2])
|
||||
c1 = self.contextnet(img1, flow[:, 2:4])
|
||||
flow = F.interpolate(flow, scale_factor=2.0, mode="bilinear",
|
||||
align_corners=False) * 2.0
|
||||
refine_output, warped_img0, warped_img1, warped_img0_gt, warped_img1_gt = self.fusionnet(
|
||||
img0, img1, flow, c0, c1, flow_gt)
|
||||
res = torch.sigmoid(refine_output[:, :3]) * 2 - 1
|
||||
mask = torch.sigmoid(refine_output[:, 3:4])
|
||||
merged_img = warped_img0 * mask + warped_img1 * (1 - mask)
|
||||
pred = merged_img + res
|
||||
pred = torch.clamp(pred, 0, 1)
|
||||
if training:
|
||||
return pred, mask, merged_img, warped_img0, warped_img1, warped_img0_gt, warped_img1_gt
|
||||
else:
|
||||
return pred
|
||||
|
||||
def inference(self, img0, img1, UHD=False):
|
||||
imgs = torch.cat((img0, img1), 1)
|
||||
flow, _ = self.flownet(imgs, UHD)
|
||||
return self.predict(imgs, flow, training=False, UHD=UHD)
|
||||
|
||||
def update(self, imgs, gt, learning_rate=0, mul=1, training=True, flow_gt=None):
|
||||
for param_group in self.optimG.param_groups:
|
||||
param_group['lr'] = learning_rate
|
||||
if training:
|
||||
self.train()
|
||||
else:
|
||||
self.eval()
|
||||
flow, flow_list = self.flownet(imgs)
|
||||
pred, mask, merged_img, warped_img0, warped_img1, warped_img0_gt, warped_img1_gt = self.predict(
|
||||
imgs, flow, flow_gt=flow_gt)
|
||||
loss_ter = self.ter(pred, gt).mean()
|
||||
if training:
|
||||
with torch.no_grad():
|
||||
loss_flow = torch.abs(warped_img0_gt - gt).mean()
|
||||
loss_mask = torch.abs(
|
||||
merged_img - gt).sum(1, True).float().detach()
|
||||
loss_mask = F.interpolate(loss_mask, scale_factor=0.5, mode="bilinear",
|
||||
align_corners=False).detach()
|
||||
flow_gt = (F.interpolate(flow_gt, scale_factor=0.5, mode="bilinear",
|
||||
align_corners=False) * 0.5).detach()
|
||||
loss_cons = 0
|
||||
for i in range(4):
|
||||
loss_cons += self.epe(flow_list[i][:, :2], flow_gt[:, :2], 1)
|
||||
loss_cons += self.epe(flow_list[i][:, 2:4], flow_gt[:, 2:4], 1)
|
||||
loss_cons = loss_cons.mean() * 0.01
|
||||
else:
|
||||
loss_cons = torch.tensor([0])
|
||||
loss_flow = torch.abs(warped_img0 - gt).mean()
|
||||
loss_mask = 1
|
||||
loss_l1 = (((pred - gt) ** 2 + 1e-6) ** 0.5).mean()
|
||||
if training:
|
||||
self.optimG.zero_grad()
|
||||
loss_G = loss_l1 + loss_cons + loss_ter
|
||||
loss_G.backward()
|
||||
self.optimG.step()
|
||||
return pred, merged_img, flow, loss_l1, loss_flow, loss_cons, loss_ter, loss_mask
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
img0 = torch.zeros(3, 3, 256, 256).float().to(device)
|
||||
img1 = torch.tensor(np.random.normal(
|
||||
0, 1, (3, 3, 256, 256))).float().to(device)
|
||||
imgs = torch.cat((img0, img1), 1)
|
||||
model = Model()
|
||||
model.eval()
|
||||
print(model.inference(imgs).shape)
|
||||
@@ -1,4 +1,5 @@
|
||||
RIFE 1.5 - Optimized for general content
|
||||
RIFE 1.6 - Updated general model
|
||||
RIFE 1.7 - Optimized for 2D animation (Recommended)
|
||||
RIFE 1.8 - Updated 2D animation model (Experimental)
|
||||
RIFE 1.7 - Optimized for 2D animation
|
||||
RIFE 1.8 - Updated 2D animation model (Experimental)
|
||||
RIFE 2.0 - Fastest and highest quality model (Recommended)
|
||||
@@ -45,9 +45,14 @@ parser.add_argument('--exp', dest='exp', type=int, default=1)
|
||||
args = parser.parse_args()
|
||||
assert (not args.input is None)
|
||||
|
||||
from model.RIFE_HD import Model
|
||||
model = Model()
|
||||
model.load_model(os.path.join(dname, args.model), -1)
|
||||
try:
|
||||
from model.RIFE_HD import Model
|
||||
model = Model()
|
||||
model.load_model(os.path.join(dname, args.model), -1)
|
||||
except:
|
||||
from model.RIFE_HDv2 import Model
|
||||
model = Model()
|
||||
model.load_model(os.path.join(dname, args.model), -1)
|
||||
model.eval()
|
||||
model.device()
|
||||
|
||||
|
||||
Reference in New Issue
Block a user