initial commit

This commit is contained in:
vaibhavs10
2023-04-27 16:12:54 +02:00
parent 2c12023eb2
commit e9ad2d5886

View File

@@ -14,6 +14,7 @@ import torch
import torch.nn.functional as F
import tqdm
from transformers import BertTokenizer
from huggingface_hub import hf_hub_download
from .model import GPTConfig, GPT
from .model_fine import FineGPT, FineGPTConfig
@@ -89,31 +90,64 @@ USE_SMALL_MODELS = os.environ.get("SUNO_USE_SMALL_MODELS", False)
GLOBAL_ENABLE_MPS = os.environ.get("SUNO_ENABLE_MPS", False)
OFFLOAD_CPU = os.environ.get("SUNO_OFFLOAD_CPU", False)
REMOTE_BASE_URL = "https://dl.suno-models.io/bark/models/v0/"
# REMOTE_BASE_URL = "https://dl.suno-models.io/bark/models/v0/"
# REMOTE_MODEL_PATHS = {
# "text_small": {
# "path": os.path.join(REMOTE_BASE_URL, "text.pt"),
# "checksum": "b3e42bcbab23b688355cd44128c4cdd3",
# },
# "coarse_small": {
# "path": os.path.join(REMOTE_BASE_URL, "coarse.pt"),
# "checksum": "5fe964825e3b0321f9d5f3857b89194d",
# },
# "fine_small": {
# "path": os.path.join(REMOTE_BASE_URL, "fine.pt"),
# "checksum": "5428d1befe05be2ba32195496e58dc90",
# },
# "text": {
# "path": os.path.join(REMOTE_BASE_URL, "text_2.pt"),
# "checksum": "54afa89d65e318d4f5f80e8e8799026a",
# },
# "coarse": {
# "path": os.path.join(REMOTE_BASE_URL, "coarse_2.pt"),
# "checksum": "8a98094e5e3a255a5c9c0ab7efe8fd28",
# },
# "fine": {
# "path": os.path.join(REMOTE_BASE_URL, "fine_2.pt"),
# "checksum": "59d184ed44e3650774a2f0503a48a97b",
# },
# }
REMOTE_MODEL_PATHS = {
"text_small": {
"path": os.path.join(REMOTE_BASE_URL, "text.pt"),
"repo_id": "reach-vb/bark-small",
"file_name": "text.pt",
"checksum": "b3e42bcbab23b688355cd44128c4cdd3",
},
"coarse_small": {
"path": os.path.join(REMOTE_BASE_URL, "coarse.pt"),
"repo_id": "reach-vb/bark-small",
"file_name": "coarse.pt",
"checksum": "5fe964825e3b0321f9d5f3857b89194d",
},
"fine_small": {
"path": os.path.join(REMOTE_BASE_URL, "fine.pt"),
"repo_id": "reach-vb/bark-small",
"file_name": "fine.pt",
"checksum": "5428d1befe05be2ba32195496e58dc90",
},
"text": {
"path": os.path.join(REMOTE_BASE_URL, "text_2.pt"),
"repo_id": "reach-vb/bark",
"file_name": "text_2.pt",
"checksum": "54afa89d65e318d4f5f80e8e8799026a",
},
"coarse": {
"path": os.path.join(REMOTE_BASE_URL, "coarse_2.pt"),
"repo_id": "reach-vb/bark",
"file_name": "coarse_2.pt",
"checksum": "8a98094e5e3a255a5c9c0ab7efe8fd28",
},
"fine": {
"path": os.path.join(REMOTE_BASE_URL, "fine_2.pt"),
"repo_id": "reach-vb/bark-small",
"file_name": "fine_2.pt",
"checksum": "59d184ed44e3650774a2f0503a48a97b",
},
}
@@ -165,21 +199,25 @@ def _parse_s3_filepath(s3_filepath):
return bucket_name, rel_s3_filepath
def _download(from_s3_path, to_local_path):
os.makedirs(CACHE_DIR, exist_ok=True)
response = requests.get(from_s3_path, stream=True)
total_size_in_bytes = int(response.headers.get("content-length", 0))
block_size = 1024
progress_bar = tqdm.tqdm(total=total_size_in_bytes, unit="iB", unit_scale=True)
with open(to_local_path, "wb") as file:
for data in response.iter_content(block_size):
progress_bar.update(len(data))
file.write(data)
progress_bar.close()
if total_size_in_bytes != 0 and progress_bar.n != total_size_in_bytes:
raise ValueError("ERROR, something went wrong")
# def _download(from_s3_path, to_local_path):
# os.makedirs(CACHE_DIR, exist_ok=True)
# response = requests.get(from_s3_path, stream=True)
# total_size_in_bytes = int(response.headers.get("content-length", 0))
# block_size = 1024
# progress_bar = tqdm.tqdm(total=total_size_in_bytes, unit="iB", unit_scale=True)
# with open(to_local_path, "wb") as file:
# for data in response.iter_content(block_size):
# progress_bar.update(len(data))
# file.write(data)
# progress_bar.close()
# if total_size_in_bytes != 0 and progress_bar.n != total_size_in_bytes:
# raise ValueError("ERROR, something went wrong")
def _download(from_hf_path, file_name, to_local_path):
os.makedirs(CACHE_DIR, exist_ok=True)
hf_hub_download(repo_id=from_hf_path, filename=file_name, cache_dir=to_local_path)
class InferenceContext:
def __init__(self, benchmark=False):
# we can't expect inputs to be the same length, so disable benchmarking by default
@@ -243,7 +281,7 @@ def _load_model(ckpt_path, device, use_small=False, model_type="text"):
os.remove(ckpt_path)
if not os.path.exists(ckpt_path):
logger.info(f"{model_type} model not found, downloading into `{CACHE_DIR}`.")
_download(model_info["path"], ckpt_path)
_download(model_info["repo_id"], model_info["file_name"], ckpt_path)
checkpoint = torch.load(ckpt_path, map_location=device)
# this is a hack
model_args = checkpoint["model_args"]