Option to offload to cpu

This commit is contained in:
Jairo Correa
2023-04-25 21:21:52 -03:00
parent 6c26fb7b34
commit 8675c23a42

View File

@@ -36,6 +36,9 @@ else:
global models
models = {}
global models_devices
models_devices = {}
CONTEXT_WINDOW_SIZE = 1024
@@ -84,6 +87,7 @@ CACHE_DIR = os.path.join(os.getenv("XDG_CACHE_HOME", default_cache_dir), "suno",
USE_SMALL_MODELS = os.environ.get("SUNO_USE_SMALL_MODELS", False)
GLOBAL_ENABLE_MPS = os.environ.get("SUNO_ENABLE_MPS", False)
OFFLOAD_CPU = os.environ.get("SUNO_OFFLOAD_CPU", False)
REMOTE_BASE_URL = "https://dl.suno-models.io/bark/models/v0/"
@@ -296,6 +300,9 @@ def load_model(use_gpu=True, use_small=False, force_reload=False, model_type="te
global models
device = _grab_best_device(use_gpu=use_gpu)
model_key = f"{model_type}"
if OFFLOAD_CPU:
models_devices[model_key] = device
device = "cpu"
if model_key not in models or force_reload:
ckpt_path = _get_ckpt_path(model_type, use_small=use_small)
clean_models(model_key=model_key)
@@ -315,6 +322,9 @@ def load_codec_model(use_gpu=True, force_reload=False):
# encodec doesn't support mps
device = "cpu"
model_key = "codec"
if OFFLOAD_CPU:
models_devices[model_key] = device
device = "cpu"
if model_key not in models or force_reload:
clean_models(model_key=model_key)
model = _load_codec_model(device)
@@ -417,6 +427,8 @@ def generate_text_semantic(
model = model_container["model"]
tokenizer = model_container["tokenizer"]
encoded_text = np.array(_tokenize(tokenizer, text)) + TEXT_ENCODING_OFFSET
if OFFLOAD_CPU:
model.to(models_devices["text"])
device = next(model.parameters()).device
if len(encoded_text) > 256:
p = round((len(encoded_text) - 256) / len(encoded_text) * 100, 1)
@@ -514,6 +526,8 @@ def generate_text_semantic(
pbar_state = req_pbar_state
pbar.close()
out = x.detach().cpu().numpy().squeeze()[256 + 256 + 1 :]
if OFFLOAD_CPU:
model.to("cpu")
assert all(0 <= out) and all(out < SEMANTIC_VOCAB_SIZE)
_clear_cuda_cache()
return out
@@ -605,6 +619,8 @@ def generate_coarse(
if "coarse" not in models:
preload_models()
model = models["coarse"]
if OFFLOAD_CPU:
model.to(models_devices["coarse"])
device = next(model.parameters()).device
# start loop
n_steps = int(
@@ -691,6 +707,8 @@ def generate_coarse(
n_step += 1
del x_in
del x_semantic_in
if OFFLOAD_CPU:
model.to("cpu")
gen_coarse_arr = x_coarse_in.detach().cpu().numpy().squeeze()[len(x_coarse_history) :]
del x_coarse_in
assert len(gen_coarse_arr) == n_steps
@@ -740,6 +758,8 @@ def generate_fine(
if "fine" not in models:
preload_models()
model = models["fine"]
if OFFLOAD_CPU:
model.to(models_devices["fine"])
device = next(model.parameters()).device
# make input arr
in_arr = np.vstack(
@@ -808,6 +828,8 @@ def generate_fine(
del in_buffer
gen_fine_arr = in_arr.detach().cpu().numpy().squeeze().T
del in_arr
if OFFLOAD_CPU:
model.to("cpu")
gen_fine_arr = gen_fine_arr[:, n_history:]
if n_remove_from_end > 0:
gen_fine_arr = gen_fine_arr[:, :-n_remove_from_end]
@@ -823,6 +845,8 @@ def codec_decode(fine_tokens):
if "codec" not in models:
preload_models()
model = models["codec"]
if OFFLOAD_CPU:
model.to(models_devices["codec"])
device = next(model.parameters()).device
arr = torch.from_numpy(fine_tokens)[None]
arr = arr.to(device)
@@ -831,4 +855,6 @@ def codec_decode(fine_tokens):
out = model.decoder(emb)
audio_arr = out.detach().cpu().numpy().squeeze()
del arr, emb, out
if OFFLOAD_CPU:
model.to("cpu")
return audio_arr