Files
Track-Anything/tracker/xmem.py
2023-04-14 00:19:09 +08:00

30 lines
848 B
Python

# input: frame list, first frame mask
# output: segmentation results on all frames
import os
import glob
import numpy as np
from PIL import Image
class XMem:
# based on https://github.com/hkchengrex/XMem
pass
if __name__ == '__main__':
# video frames
video_path_list = glob.glob(os.path.join('/ssd1/gaomingqi/datasets/davis/JPEGImages/480p/dance-twirl', '*.jpg'))
video_path_list.sort()
# first frame
first_frame_path = '/ssd1/gaomingqi/datasets/davis/Annotations/480p/dance-twirl/00000.png'
# load frames
frames = []
for video_path in video_path_list:
frames.append(np.array(Image.open(video_path).convert('RGB')))
frames = np.stack(frames, 0) # N, H, W, C
# load first frame annotation
first_frame_annotation = np.array(Image.open(first_frame_path).convert('P')) # H, W, C