This commit is contained in:
ShangGaoG
2023-04-14 10:20:46 +08:00

View File

@@ -39,8 +39,10 @@ class BaseTracker:
transforms.ToTensor(), transforms.ToTensor(),
im_normalization, im_normalization,
]) ])
self.mapper = MaskMapper()
self.device = device self.device = device
@torch.no_grad()
def resize_mask(self, mask): def resize_mask(self, mask):
# mask transform is applied AFTER mapper, so we need to post-process it in eval.py # mask transform is applied AFTER mapper, so we need to post-process it in eval.py
h, w = mask.shape[-2:] h, w = mask.shape[-2:]
@@ -48,6 +50,7 @@ class BaseTracker:
return F.interpolate(mask, (int(h/min_hw*self.size), int(w/min_hw*self.size)), return F.interpolate(mask, (int(h/min_hw*self.size), int(w/min_hw*self.size)),
mode='nearest') mode='nearest')
@torch.no_grad()
def track(self, frames, first_frame_annotation): def track(self, frames, first_frame_annotation):
""" """
Input: Input:
@@ -57,34 +60,28 @@ class BaseTracker:
Output: Output:
masks: numpy arrays: H, W masks: numpy arrays: H, W
""" """
shape = np.array(frames).shape[1:3] # H, W vid_length = len(frames)
frame_list = [self.im_transform(frame).to(self.device) for frame in frames] masks = []
frame_tensors = torch.stack(frame_list, dim=0)
# data transformation
mapper = MaskMapper()
vid_length = len(frame_tensors) for ti, frame in enumerate(frames):
# convert to tensor
for ti, frame_tensor in enumerate(frame_tensors): frame_tensor = self.im_transform(frame).to(self.device)
if ti == 0: if ti == 0:
mask, labels = mapper.convert_mask(first_frame_annotation) mask, labels = self.mapper.convert_mask(first_frame_annotation)
mask = torch.Tensor(mask).to(self.device) mask = torch.Tensor(mask).to(self.device)
self.tracker.set_all_labels(list(mapper.remappings.values())) self.tracker.set_all_labels(list(self.mapper.remappings.values()))
else: else:
mask = None mask = None
labels = None labels = None
# track one frame # track one frame
prob = self.tracker.step(frame_tensor, mask, labels, end=(ti==vid_length-1)) prob = self.tracker.step(frame_tensor, mask, labels, end=(ti==vid_length-1))
# convert to mask
out_mask = torch.argmax(prob, dim=0) out_mask = torch.argmax(prob, dim=0)
out_mask = (out_mask.detach().cpu().numpy()).astype(np.uint8) out_mask = (out_mask.detach().cpu().numpy()).astype(np.uint8)
masks.append(out_mask)
painted_image = mask_painter(frames[ti], out_mask) return np.stack(masks, 0)
# save
painted_image = Image.fromarray(painted_image)
painted_image.save(f'/ssd1/gaomingqi/results/TrackA/{ti}.png')
if __name__ == '__main__': if __name__ == '__main__':
@@ -94,7 +91,7 @@ if __name__ == '__main__':
# first frame # first frame
first_frame_path = '/ssd1/gaomingqi/datasets/davis/Annotations/480p/dance-twirl/00000.png' first_frame_path = '/ssd1/gaomingqi/datasets/davis/Annotations/480p/dance-twirl/00000.png'
# load frames # load frames
frames = ["test_confict"] frames = []
for video_path in video_path_list: for video_path in video_path_list:
frames.append(np.array(Image.open(video_path).convert('RGB'))) frames.append(np.array(Image.open(video_path).convert('RGB')))
frames = np.stack(frames, 0) # N, H, W, C frames = np.stack(frames, 0) # N, H, W, C
@@ -104,9 +101,16 @@ if __name__ == '__main__':
# ---------------------------------------------------------- # ----------------------------------------------------------
# initalise tracker # initalise tracker
# ---------------------------------------------------------- # ----------------------------------------------------------
device = 'cuda:0' device = 'cuda:1'
XMEM_checkpoint = '/ssd1/gaomingqi/checkpoints/XMem-s012.pth' XMEM_checkpoint = '/ssd1/gaomingqi/checkpoints/XMem-s012.pth'
tracker = BaseTracker('cuda:0', XMEM_checkpoint) tracker = BaseTracker(device, XMEM_checkpoint)
# track anything given in the first frame annotation # track anything given in the first frame annotation
tracker.track(frames, first_frame_annotation) masks = tracker.track(frames, first_frame_annotation)
# save
for ti, (frame, mask) in enumerate(zip(frames, masks)):
painted_image = mask_painter(frame, mask)
# save
painted_image = Image.fromarray(painted_image)
painted_image.save(f'/ssd1/gaomingqi/results/TrackA/{ti:05d}.png')