diff --git a/tracker/base_tracker.py b/tracker/base_tracker.py index d008893..a544408 100644 --- a/tracker/base_tracker.py +++ b/tracker/base_tracker.py @@ -39,8 +39,10 @@ class BaseTracker: transforms.ToTensor(), im_normalization, ]) + self.mapper = MaskMapper() self.device = device + @torch.no_grad() def resize_mask(self, mask): # mask transform is applied AFTER mapper, so we need to post-process it in eval.py h, w = mask.shape[-2:] @@ -48,6 +50,7 @@ class BaseTracker: return F.interpolate(mask, (int(h/min_hw*self.size), int(w/min_hw*self.size)), mode='nearest') + @torch.no_grad() def track(self, frames, first_frame_annotation): """ Input: @@ -57,34 +60,28 @@ class BaseTracker: Output: masks: numpy arrays: H, W """ - shape = np.array(frames).shape[1:3] # H, W - frame_list = [self.im_transform(frame).to(self.device) for frame in frames] - frame_tensors = torch.stack(frame_list, dim=0) - - # data transformation - mapper = MaskMapper() + vid_length = len(frames) + masks = [] - vid_length = len(frame_tensors) - - for ti, frame_tensor in enumerate(frame_tensors): + for ti, frame in enumerate(frames): + # convert to tensor + frame_tensor = self.im_transform(frame).to(self.device) if ti == 0: - mask, labels = mapper.convert_mask(first_frame_annotation) + mask, labels = self.mapper.convert_mask(first_frame_annotation) mask = torch.Tensor(mask).to(self.device) - self.tracker.set_all_labels(list(mapper.remappings.values())) + self.tracker.set_all_labels(list(self.mapper.remappings.values())) else: mask = None labels = None # track one frame prob = self.tracker.step(frame_tensor, mask, labels, end=(ti==vid_length-1)) - + # convert to mask out_mask = torch.argmax(prob, dim=0) out_mask = (out_mask.detach().cpu().numpy()).astype(np.uint8) + masks.append(out_mask) - painted_image = mask_painter(frames[ti], out_mask) - # save - painted_image = Image.fromarray(painted_image) - painted_image.save(f'/ssd1/gaomingqi/results/TrackA/{ti}.png') + return np.stack(masks, 0) if __name__ == '__main__': @@ -94,7 +91,7 @@ if __name__ == '__main__': # first frame first_frame_path = '/ssd1/gaomingqi/datasets/davis/Annotations/480p/dance-twirl/00000.png' # load frames - frames = ["test_confict"] + frames = [] for video_path in video_path_list: frames.append(np.array(Image.open(video_path).convert('RGB'))) frames = np.stack(frames, 0) # N, H, W, C @@ -104,9 +101,16 @@ if __name__ == '__main__': # ---------------------------------------------------------- # initalise tracker # ---------------------------------------------------------- - device = 'cuda:0' + device = 'cuda:1' XMEM_checkpoint = '/ssd1/gaomingqi/checkpoints/XMem-s012.pth' - tracker = BaseTracker('cuda:0', XMEM_checkpoint) + tracker = BaseTracker(device, XMEM_checkpoint) # track anything given in the first frame annotation - tracker.track(frames, first_frame_annotation) + masks = tracker.track(frames, first_frame_annotation) + + # save + for ti, (frame, mask) in enumerate(zip(frames, masks)): + painted_image = mask_painter(frame, mask) + # save + painted_image = Image.fromarray(painted_image) + painted_image.save(f'/ssd1/gaomingqi/results/TrackA/{ti:05d}.png')