add multi-object support to base_tracker

This commit is contained in:
gaomingqi
2023-04-17 12:36:14 +08:00
7 changed files with 281 additions and 78 deletions

View File

@@ -5,11 +5,26 @@
## Demo
https://user-images.githubusercontent.com/28050374/232070852-af2e85e5-a834-4bbc-b2e0-c7961315b6c6.mp4
https://user-images.githubusercontent.com/28050374/232322963-140b44a1-0b65-409a-b3fa-ce9f780aa40e.MP4
## Get Started
#### Linux
```bash
# Clone the repository:
git clone https://github.com/gaomingqi/Track-Anything.git
cd Track-Anything
# Install dependencies:
pip install -r requirements.txt
# Run the Track-Anything gradio demo.
python app.py --device cuda:0 --sam_model_type vit_h --port 12212
```
<<<<<<< HEAD
=======
>>>>>>> 094430ad280465347ddca6ec9f8f39a0ebfeb749
## Acknowledgement
The project is based on [Segment Anything](https://github.com/facebookresearch/segment-anything) and [XMem](https://github.com/hkchengrex/XMem). Thanks for the authors for their efforts.

168
app.py
View File

@@ -62,7 +62,6 @@ def get_prompt(click_state, click_input):
}
return prompt
def get_frames_from_video(video_input, play_state):
"""
Args:
@@ -72,7 +71,10 @@ def get_frames_from_video(video_input, play_state):
[[0:nearest_frame], [nearest_frame:], nearest_frame]
"""
video_path = video_input
timestamp = play_state[1] - play_state[0]
try:
timestamp = play_state[1] - play_state[0]
except:
timestamp = 0.1
frames = []
try:
cap = cv2.VideoCapture(video_path)
@@ -121,7 +123,9 @@ def generate_video_from_frames(frames, output_path, fps=30):
torchvision.io.write_video(output_path, frames, fps=fps, video_codec="libx264")
return output_path
def model_reset():
model.xmem.clear_memory()
return None
def sam_refine(origin_frame, point_prompt, click_state, logit, evt:gr.SelectData):
"""
@@ -149,57 +153,60 @@ def sam_refine(origin_frame, point_prompt, click_state, logit, evt:gr.SelectData
points=np.array(prompt["input_point"]),
labels=np.array(prompt["input_label"]),
multimask=prompt["multimask_output"],
)
yield painted_image, click_state, logit, mask
return painted_image, click_state, logit, mask
def vos_tracking_video(video_state, template_mask):
masks, logits, painted_images = model.generator(images=video_state[1], mask=template_mask)
video_output = generate_video_from_frames(painted_images, output_path="./output.mp4")
return video_output
# image_selection_slider = gr.Slider(minimum=1, maximum=len(video_state[1]), value=1, label="Image Selection", interactive=True)
return video_output, painted_images, masks, logits
def vos_tracking_image(video_state, template_mask, result_queue, done_queue):
images = video_state[1]
images = images[:5]
for i in range(len(images)):
if i ==0:
mask, logit, painted_image = model.xmem.track(images[i], template_mask)
result_queue['images'].put(images[i])
result_queue['masks'].put(mask)
result_queue['logits'].put(logit)
result_queue['painted'].put(painted_image)
else:
mask, logit, painted_image = model.xmem.track(images[i])
result_queue['images'].put(images[i])
result_queue['masks'].put(mask)
result_queue['logits'].put(logit)
result_queue['painted'].put(painted_image)
done_queue.put(False)
time.sleep(1)
done_queue.put(True)
def vos_tracking_image(image_selection_slider, painted_images):
def update_gradio_image(result_queue, done_queue):
print("update_gradio_image")
while True:
if not done_queue.empty():
if done_queue.get():
break
if not result_queue.empty():
image = result_queue['images'].get()
mask = result_queue['masks'].get()
logit = result_queue['logits'].get()
painted_image = result_queue['painted'].get()
yield painted_image
def parallel_tracking(video_state, template_mask):
with concurrent.futures.ThreadPoolExecutor(max_workers=2) as executor:
executor.submit(vos_tracking_image, video_state, template_mask, result_queue, done_queue)
executor.submit(update_gradio_image, result_queue, done_queue)
# images = video_state[1]
percentage = image_selection_slider / 100
select_frame_num = int(percentage * len(painted_images))
return painted_images[select_frame_num], select_frame_num
def interactive_correction(video_state, point_prompt, click_state, select_correction_frame, evt: gr.SelectData):
"""
Args:
template_frame: PIL.Image
point_prompt: flag for positive or negative button click
click_state: [[points], [labels]]
"""
refine_image = video_state[1][select_correction_frame]
if point_prompt == "Positive":
coordinate = "[[{},{},1]]".format(evt.index[0], evt.index[1])
else:
coordinate = "[[{},{},0]]".format(evt.index[0], evt.index[1])
# prompt for sam model
prompt = get_prompt(click_state=click_state, click_input=coordinate)
model.samcontroler.seg_again(refine_image)
corrected_mask, corrected_logit, corrected_painted_image = model.first_frame_click(
image=refine_image,
points=np.array(prompt["input_point"]),
labels=np.array(prompt["input_label"]),
multimask=prompt["multimask_output"],
)
return corrected_painted_image, [corrected_mask, corrected_logit, corrected_painted_image]
def correct_track(video_state, select_correction_frame, corrected_state, masks, logits, painted_images):
model.xmem.clear_memory()
# inference the following images
following_images = video_state[1][select_correction_frame:]
corrected_masks, corrected_logits, corrected_painted_images = model.generator(images=following_images, mask=corrected_state[0])
masks = masks[:select_correction_frame] + corrected_masks
logits = logits[:select_correction_frame] + corrected_logits
painted_images = painted_images[:select_correction_frame] + corrected_painted_images
video_output = generate_video_from_frames(painted_images, output_path="./output.mp4")
return video_output, painted_images, logits, masks
# check and download checkpoints if needed
SAM_checkpoint = "sam_vit_h_4b8939.pth"
@@ -212,13 +219,10 @@ xmem_checkpoint = download_checkpoint(xmem_checkpoint_url, folder, xmem_checkpoi
# args, defined in track_anything.py
args = parse_augment()
args.port = 12214
args.port = 12315
args.device = "cuda:2"
model = TrackingAnything(SAM_checkpoint, xmem_checkpoint, args)
result_queue = {"images": queue.Queue(),
"masks": queue.Queue(),
"logits": queue.Queue(),
"painted": queue.Queue()}
done_queue = queue.Queue()
with gr.Blocks() as iface:
"""
@@ -229,8 +233,12 @@ with gr.Blocks() as iface:
video_state = gr.State([[],[],[]])
click_state = gr.State([[],[]])
logits = gr.State([])
masks = gr.State([])
painted_images = gr.State([])
origin_image = gr.State(None)
template_mask = gr.State(None)
select_correction_frame = gr.State(None)
corrected_state = gr.State([[],[],[]])
# queue value for image refresh, origin image, mask, logits, painted image
@@ -277,10 +285,11 @@ with gr.Blocks() as iface:
# for intermedia result check and correction
# intermedia_image = gr.Image(type="pil", interactive=True, elem_id="intermedia_frame").style(height=360)
video_output = gr.Video().style(height=360)
tracking_video_predict_button = gr.Button(value="Video")
tracking_video_predict_button = gr.Button(value="Tracking")
image_output = gr.Image(type="pil", interactive=True, elem_id="image_output").style(height=360)
tracking_image_predict_button = gr.Button(value="Tracking")
image_selection_slider = gr.Slider(minimum=0, maximum=100, step=0.1, value=0, label="Image Selection", interactive=True)
correct_track_button = gr.Button(value="Interactive Correction")
template_frame.select(
fn=sam_refine,
@@ -304,37 +313,44 @@ with gr.Blocks() as iface:
tracking_video_predict_button.click(
fn=vos_tracking_video,
inputs=[video_state, template_mask],
outputs=[video_output]
outputs=[video_output, painted_images, masks, logits]
)
tracking_image_predict_button.click(
fn=parallel_tracking,
inputs=[video_state, template_mask],
outputs=[image_output]
image_selection_slider.release(fn=vos_tracking_image,
inputs=[image_selection_slider, painted_images], outputs=[image_output, select_correction_frame], api_name="select_image")
# correction
image_output.select(
fn=interactive_correction,
inputs=[video_state, point_prompt, click_state, select_correction_frame],
outputs=[image_output, corrected_state]
)
# clear
# clear_button_clike.click(
# lambda x: ([[], [], []], x, ""),
# [origin_image],
# [click_state, image_input, wiki_output],
# queue=False,
# show_progress=False
# )
# clear_button_image.click(
# lambda: (None, [], [], [[], [], []], "", ""),
# [],
# [image_input, chatbot, state, click_state, wiki_output, origin_image],
# queue=False,
# show_progress=False
# )
correct_track_button.click(
fn=correct_track,
inputs=[video_state, select_correction_frame, corrected_state, masks, logits, painted_images],
outputs=[video_output, painted_images, logits, masks ]
)
# clear input
video_input.clear(
lambda: (None, [], [], [[], [], []], None),
lambda: ([], [], [[], [], []],
None, "", "", "", "", "", "", "", [[],[]],
None),
[],
[video_input, state, play_state, video_state, template_frame],
[ state, play_state, video_state,
template_frame, video_output, image_output, origin_image, template_mask, painted_images, masks, logits, click_state,
select_correction_frame],
queue=False,
show_progress=False
)
clear_button_image.click(
fn=model_reset
)
clear_button_clike.click(
lambda: ([[],[]]),
[],
[click_state],
queue=False,
show_progress=False
)
iface.queue(concurrency_count=1)
iface.launch(debug=True, enable_queue=True, server_port=args.port, server_name="0.0.0.0")

23
app_test.py Normal file
View File

@@ -0,0 +1,23 @@
import gradio as gr
def update_iframe(slider_value):
return f'''
<script>
window.addEventListener('message', function(event) {{
if (event.data.sliderValue !== undefined) {{
var iframe = document.getElementById("text_iframe");
iframe.src = "http://localhost:5001/get_text?slider_value=" + event.data.sliderValue;
}}
}}, false);
</script>
<iframe id="text_iframe" src="http://localhost:5001/get_text?slider_value={slider_value}" style="width: 100%; height: 100%; border: none;"></iframe>
'''
iface = gr.Interface(
fn=update_iframe,
inputs=gr.inputs.Slider(minimum=0, maximum=100, step=1, default=50),
outputs=gr.outputs.HTML(),
allow_flagging=False,
)
iface.launch(server_name='0.0.0.0', server_port=12212)

27
template.html Normal file
View File

@@ -0,0 +1,27 @@
<!-- template.html -->
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Gradio Video Pause Time</title>
</head>
<body>
<video id="video" controls>
<source src="{{VIDEO_URL}}" type="video/mp4">
Your browser does not support the video tag.
</video>
<script>
const video = document.getElementById("video");
let pauseTime = null;
video.addEventListener("pause", () => {
pauseTime = video.currentTime;
});
function getPauseTime() {
return pauseTime;
}
</script>
</body>
</html>

50
templates/index.html Normal file
View File

@@ -0,0 +1,50 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Video Object Segmentation</title>
<script src="https://code.jquery.com/jquery-3.6.0.min.js"></script>
</head>
<body>
<h1>Video Object Segmentation</h1>
<input type="file" id="video-input" accept="video/*">
<button id="upload-video">Upload Video</button>
<br>
<button id="template-select">Template Select</button>
<button id="sam-refine">SAM Refine</button>
<br>
<button id="track-video">Track Video</button>
<button id="track-image">Track Image</button>
<br>
<a href="/download_video" id="download-video" download>Download Video</a>
<script>
// JavaScript code for handling interactions with the server
$("#upload-video").click(function() {
var videoInput = document.getElementById("video-input");
var formData = new FormData();
formData.append("video", videoInput.files[0]);
$.ajax({
url: "/upload_video",
type: "POST",
data: formData,
processData: false,
contentType: false,
success: function(response) {
console.log(response);
// Process the response and update the UI accordingly
},
error: function(jqXHR, textStatus, errorThrown) {
console.log(textStatus, errorThrown);
}
});
});
</script>
</body>
</html>

72
text_server.py Normal file
View File

@@ -0,0 +1,72 @@
import os
import sys
import cv2
import time
import json
import queue
import numpy as np
import requests
import concurrent.futures
from PIL import Image
from flask import Flask, render_template, request, jsonify, send_file
import torchvision
import torch
from demo import automask_image_app, automask_video_app, sahi_autoseg_app
sys.path.append(sys.path[0] + "/tracker")
sys.path.append(sys.path[0] + "/tracker/model")
from track_anything import TrackingAnything
from track_anything import parse_augment
# ... (all the functions defined in the original code except the Gradio part)
app = Flask(__name__)
app.config['UPLOAD_FOLDER'] = './uploaded_videos'
app.config['ALLOWED_EXTENSIONS'] = {'mp4', 'avi', 'mov', 'mkv'}
def allowed_file(filename):
return '.' in filename and filename.rsplit('.', 1)[1].lower() in app.config['ALLOWED_EXTENSIONS']
@app.route("/")
def index():
return render_template("index.html")
@app.route("/upload_video", methods=["POST"])
def upload_video():
# ... (handle video upload and processing)
return jsonify(status="success", data=video_data)
@app.route("/template_select", methods=["POST"])
def template_select():
# ... (handle template selection and processing)
return jsonify(status="success", data=template_data)
@app.route("/sam_refine", methods=["POST"])
def sam_refine_request():
# ... (handle sam refine and processing)
return jsonify(status="success", data=sam_data)
@app.route("/track_video", methods=["POST"])
def track_video():
# ... (handle video tracking and processing)
return jsonify(status="success", data=tracking_data)
@app.route("/track_image", methods=["POST"])
def track_image():
# ... (handle image tracking and processing)
return jsonify(status="success", data=tracking_data)
@app.route("/download_video", methods=["GET"])
def download_video():
try:
return send_file("output.mp4", attachment_filename="output.mp4")
except Exception as e:
return str(e)
if __name__ == "__main__":
app.run(debug=True, host="0.0.0.0", port=args.port)
if __name__ == '__main__':
app.run(host="0.0.0.0",port=12212, debug=True)

View File

@@ -12,7 +12,7 @@ class TrackingAnything():
def __init__(self, sam_checkpoint, xmem_checkpoint, args):
self.args = args
self.samcontroler = SamControler(sam_checkpoint, args.sam_model_type, args.device)
self.xmem = BaseTracker(xmem_checkpoint, device=args.device, )
self.xmem = BaseTracker(xmem_checkpoint, device=args.device, sam_checkpoint=sam_checkpoint, model_type=args.sam_model_type)
def inference_step(self, first_flag: bool, interact_flag: bool, image: np.ndarray,