mirror of
https://github.com/gaomingqi/Track-Anything.git
synced 2025-12-16 08:27:49 +01:00
start app develop
This commit is contained in:
87
demo.py
Normal file
87
demo.py
Normal file
@@ -0,0 +1,87 @@
|
||||
from metaseg import SegAutoMaskPredictor, SegManualMaskPredictor, SahiAutoSegmentation, sahi_sliced_predict
|
||||
|
||||
# For image
|
||||
|
||||
def automask_image_app(image_path, model_type, points_per_side, points_per_batch, min_area):
|
||||
SegAutoMaskPredictor().image_predict(
|
||||
source=image_path,
|
||||
model_type=model_type, # vit_l, vit_h, vit_b
|
||||
points_per_side=points_per_side,
|
||||
points_per_batch=points_per_batch,
|
||||
min_area=min_area,
|
||||
output_path="output.png",
|
||||
show=False,
|
||||
save=True,
|
||||
)
|
||||
return "output.png"
|
||||
|
||||
|
||||
# For video
|
||||
|
||||
def automask_video_app(video_path, model_type, points_per_side, points_per_batch, min_area):
|
||||
SegAutoMaskPredictor().video_predict(
|
||||
source=video_path,
|
||||
model_type=model_type, # vit_l, vit_h, vit_b
|
||||
points_per_side=points_per_side,
|
||||
points_per_batch=points_per_batch,
|
||||
min_area=min_area,
|
||||
output_path="output.mp4",
|
||||
)
|
||||
return "output.mp4"
|
||||
|
||||
|
||||
# For manuel box and point selection
|
||||
|
||||
def manual_app(image_path, model_type, input_point, input_label, input_box, multimask_output, random_color):
|
||||
SegManualMaskPredictor().image_predict(
|
||||
source=image_path,
|
||||
model_type=model_type, # vit_l, vit_h, vit_b
|
||||
input_point=input_point,
|
||||
input_label=input_label,
|
||||
input_box=input_box,
|
||||
multimask_output=multimask_output,
|
||||
random_color=random_color,
|
||||
output_path="output.png",
|
||||
show=False,
|
||||
save=True,
|
||||
)
|
||||
return "output.png"
|
||||
|
||||
|
||||
# For sahi sliced prediction
|
||||
|
||||
def sahi_autoseg_app(
|
||||
image_path,
|
||||
sam_model_type,
|
||||
detection_model_type,
|
||||
detection_model_path,
|
||||
conf_th,
|
||||
image_size,
|
||||
slice_height,
|
||||
slice_width,
|
||||
overlap_height_ratio,
|
||||
overlap_width_ratio,
|
||||
):
|
||||
boxes = sahi_sliced_predict(
|
||||
image_path=image_path,
|
||||
detection_model_type=detection_model_type, # yolov8, detectron2, mmdetection, torchvision
|
||||
detection_model_path=detection_model_path,
|
||||
conf_th=conf_th,
|
||||
image_size=image_size,
|
||||
slice_height=slice_height,
|
||||
slice_width=slice_width,
|
||||
overlap_height_ratio=overlap_height_ratio,
|
||||
overlap_width_ratio=overlap_width_ratio,
|
||||
)
|
||||
|
||||
SahiAutoSegmentation().predict(
|
||||
source=image_path,
|
||||
model_type=sam_model_type,
|
||||
input_box=boxes,
|
||||
multimask_output=False,
|
||||
random_color=False,
|
||||
show=False,
|
||||
save=True,
|
||||
)
|
||||
|
||||
return "output.png"
|
||||
Reference in New Issue
Block a user