Add RIFE_m

This commit is contained in:
hzwer
2021-11-15 23:32:37 +08:00
parent 7a20727733
commit 4fed755fd0
4 changed files with 134 additions and 14 deletions

View File

@@ -13,7 +13,7 @@ from skimage.color import rgb2yuv, yuv2rgb
from yuv_frame_io import YUV_Read,YUV_Write
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = Model()
model = Model(arbitrary=True)
model.load_model('train_log')
model.eval()
model.device()
@@ -31,14 +31,21 @@ name_list = [
('HD_dataset/HD544p_GT/Sintel_Temple1_1280x544.yuv', 544, 1280),
('HD_dataset/HD544p_GT/Sintel_Temple2_1280x544.yuv', 544, 1280),
]
def inference(I0, I1, pad, multi=2):
def inference(I0, I1, pad, multi=2, arbitrary=True):
img = [I0, I1]
for i in range(multi):
res = [I0]
for j in range(len(img) - 1):
res.append(model.inference(img[j], img[j + 1]))
res.append(img[j + 1])
img = res
if not arbitrary:
for i in range(multi):
res = [I0]
for j in range(len(img) - 1):
res.append(model.inference(img[j], img[j + 1]))
res.append(img[j + 1])
img = res
else:
img = [I0]
p = 2**multi
for i in range(p-1):
img.append(model.inference(I0, I1, timestep=(i+1)*(1./p)))
img.append(I1)
for i in range(len(img)):
img[i] = img[i][0][:, pad: -pad]
return img[1: -1]

View File

@@ -60,7 +60,7 @@ class IFNet(nn.Module):
self.contextnet = Contextnet()
self.unet = Unet()
def forward(self, x, scale=[4,2,1]):
def forward(self, x, scale=[4,2,1], timestep=0.5):
img0 = x[:, :3]
img1 = x[:, 3:6]
gt = x[:, 6:] # In inference time, gt is None

109
model/IFNet_m.py Normal file
View File

@@ -0,0 +1,109 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
from model.warplayer import warp
from model.refine import *
def deconv(in_planes, out_planes, kernel_size=4, stride=2, padding=1):
return nn.Sequential(
torch.nn.ConvTranspose2d(in_channels=in_planes, out_channels=out_planes, kernel_size=4, stride=2, padding=1),
nn.PReLU(out_planes)
)
def conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
return nn.Sequential(
nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
padding=padding, dilation=dilation, bias=True),
nn.PReLU(out_planes)
)
class IFBlock(nn.Module):
def __init__(self, in_planes, c=64):
super(IFBlock, self).__init__()
self.conv0 = nn.Sequential(
conv(in_planes, c//2, 3, 2, 1),
conv(c//2, c, 3, 2, 1),
)
self.convblock = nn.Sequential(
conv(c, c),
conv(c, c),
conv(c, c),
conv(c, c),
conv(c, c),
conv(c, c),
conv(c, c),
conv(c, c),
)
self.lastconv = nn.ConvTranspose2d(c, 5, 4, 2, 1)
def forward(self, x, flow, scale):
if scale != 1:
x = F.interpolate(x, scale_factor = 1. / scale, mode="bilinear", align_corners=False)
if flow != None:
flow = F.interpolate(flow, scale_factor = 1. / scale, mode="bilinear", align_corners=False) * 1. / scale
x = torch.cat((x, flow), 1)
x = self.conv0(x)
x = self.convblock(x) + x
tmp = self.lastconv(x)
tmp = F.interpolate(tmp, scale_factor = scale * 2, mode="bilinear", align_corners=False)
flow = tmp[:, :4] * scale * 2
mask = tmp[:, 4:5]
return flow, mask
class IFNet_m(nn.Module):
def __init__(self):
super(IFNet_m, self).__init__()
self.block0 = IFBlock(6+1, c=240)
self.block1 = IFBlock(13+4+1, c=150)
self.block2 = IFBlock(13+4+1, c=90)
self.block_tea = IFBlock(16+4+1, c=90)
self.contextnet = Contextnet()
self.unet = Unet()
def forward(self, x, scale=[4,2,1], timestep=0.5):
timestep = (x[:, :1].clone() * 0 + 1) * timestep
img0 = x[:, :3]
img1 = x[:, 3:6]
gt = x[:, 6:] # In inference time, gt is None
flow_list = []
merged = []
mask_list = []
warped_img0 = img0
warped_img1 = img1
flow = None
loss_distill = 0
stu = [self.block0, self.block1, self.block2]
for i in range(3):
if flow != None:
flow_d, mask_d = stu[i](torch.cat((img0, img1, timestep, warped_img0, warped_img1, mask), 1), flow, scale=scale[i])
flow = flow + flow_d
mask = mask + mask_d
else:
flow, mask = stu[i](torch.cat((img0, img1, timestep), 1), None, scale=scale[i])
mask_list.append(torch.sigmoid(mask))
flow_list.append(flow)
warped_img0 = warp(img0, flow[:, :2])
warped_img1 = warp(img1, flow[:, 2:4])
merged_student = (warped_img0, warped_img1)
merged.append(merged_student)
if gt.shape[1] == 3:
flow_d, mask_d = self.block_tea(torch.cat((img0, img1, timestep, warped_img0, warped_img1, mask, gt), 1), flow, scale=1)
flow_teacher = flow + flow_d
warped_img0_teacher = warp(img0, flow_teacher[:, :2])
warped_img1_teacher = warp(img1, flow_teacher[:, 2:4])
mask_teacher = torch.sigmoid(mask + mask_d)
merged_teacher = warped_img0_teacher * mask_teacher + warped_img1_teacher * (1 - mask_teacher)
else:
flow_teacher = None
merged_teacher = None
for i in range(3):
merged[i] = merged[i][0] * mask_list[i] + merged[i][1] * (1 - mask_list[i])
if gt.shape[1] == 3:
loss_mask = ((merged[i] - gt).abs().mean(1, True) > (merged_teacher - gt).abs().mean(1, True) + 0.01).float().detach()
loss_distill += ((flow_teacher.detach() - flow_list[i]).abs() * loss_mask).mean()
c0 = self.contextnet(img0, flow[:, :2])
c1 = self.contextnet(img1, flow[:, 2:4])
tmp = self.unet(img0, img1, warped_img0, warped_img1, mask, flow, c0, c1)
res = tmp[:, :3] * 2 - 1
merged[2] = torch.clamp(merged[2] + res, 0, 1)
return flow_list, mask_list[2], merged, flow_teacher, merged_teacher, loss_distill

View File

@@ -7,6 +7,7 @@ import itertools
from model.warplayer import warp
from torch.nn.parallel import DistributedDataParallel as DDP
from model.IFNet import *
from model.IFNet_m import *
import torch.nn.functional as F
from model.loss import *
from model.laplacian import *
@@ -15,8 +16,11 @@ from model.refine import *
device = torch.device("cuda")
class Model:
def __init__(self, local_rank=-1):
self.flownet = IFNet()
def __init__(self, local_rank=-1, arbitrary=False):
if arbitrary == True:
self.flownet = IFNet_m()
else:
self.flownet = IFNet()
self.device()
self.optimG = AdamW(self.flownet.parameters(), lr=1e-6, weight_decay=1e-3) # use large weight decay may avoid NaN loss
self.epe = EPE()
@@ -49,13 +53,13 @@ class Model:
if rank == 0:
torch.save(self.flownet.state_dict(),'{}/flownet.pkl'.format(path))
def inference(self, img0, img1, scale_list=[4, 2, 1], TTA=False):
def inference(self, img0, img1, scale_list=[4, 2, 1], TTA=False, timestep=0.5):
imgs = torch.cat((img0, img1), 1)
flow, mask, merged, flow_teacher, merged_teacher, loss_distill = self.flownet(imgs, scale_list)
flow, mask, merged, flow_teacher, merged_teacher, loss_distill = self.flownet(imgs, scale_list, timestep=timestep)
if TTA == False:
return merged[2]
else:
flow2, mask2, merged2, flow_teacher2, merged_teacher2, loss_distill2 = self.flownet(imgs.flip(2).flip(3), scale_list)
flow2, mask2, merged2, flow_teacher2, merged_teacher2, loss_distill2 = self.flownet(imgs.flip(2).flip(3), scale_list, timestep=timestep)
return (merged[2] + merged2[2].flip(2).flip(3)) / 2
def update(self, imgs, gt, learning_rate=0, mul=1, training=True, flow_gt=None):