Files
ECCV2022-RIFE/inference_video.py

245 lines
9.3 KiB
Python
Raw Normal View History

2020-11-18 10:44:18 +08:00
import os
import cv2
import torch
import argparse
import numpy as np
from tqdm import tqdm
from torch.nn import functional as F
2020-11-20 12:23:56 +08:00
import warnings
2020-11-20 19:08:47 +08:00
import _thread
2020-11-22 14:41:07 +08:00
import skvideo.io
2020-11-22 19:39:03 +08:00
from queue import Queue, Empty
2021-01-18 17:40:44 +08:00
from benchmark.pytorch_msssim import ssim_matlab
2020-12-02 17:51:42 +08:00
warnings.filterwarnings("ignore")
2020-11-25 02:10:31 -04:00
2021-01-18 17:40:44 +08:00
def transferAudio(sourceVideo, targetVideo):
2020-12-03 18:59:50 +08:00
import shutil
import moviepy.editor
2020-12-14 17:58:48 +13:00
tempAudioFileName = "./temp/audio.mkv"
# split audio from original video file and store in "temp" directory
if True:
2020-12-14 17:58:48 +13:00
# clear old "temp" directory if it exits
if os.path.isdir("temp"):
# remove temp directory
shutil.rmtree("temp")
# create new "temp" directory
os.makedirs("temp")
2020-12-14 17:58:48 +13:00
# extract audio from video
os.system("ffmpeg -y -i " + sourceVideo + " -c:a copy -vn " + tempAudioFileName)
2021-01-17 17:34:48 +01:00
targetNoAudio = os.path.splitext(targetVideo)[0] + "_noaudio" + os.path.splitext(targetVideo)[1]
os.rename(targetVideo, targetNoAudio)
# combine audio file and new video file
2021-01-17 17:34:48 +01:00
os.system("ffmpeg -y -i " + targetNoAudio + " -i " + tempAudioFileName + " -c copy " + targetVideo)
2020-12-14 20:50:54 +13:00
if os.path.getsize(targetVideo) == 0: # if ffmpeg failed to merge the video and audio together try converting the audio to aac
tempAudioFileName = "./temp/audio.m4a"
os.system("ffmpeg -y -i " + sourceVideo + " -c:a aac -b:a 160k -vn " + tempAudioFileName)
2021-01-17 17:34:48 +01:00
os.system("ffmpeg -y -i " + targetNoAudio + " -i " + tempAudioFileName + " -c copy " + targetVideo)
if (os.path.getsize(targetVideo) == 0): # if aac is not supported by selected format
2021-01-17 17:34:48 +01:00
os.rename(targetNoAudio, targetVideo)
print("Audio transfer failed. Interpolated video will have no audio")
else:
print("Lossless audio transfer failed. Audio was transcoded to AAC (M4A) instead.")
2020-12-14 20:50:54 +13:00
# remove audio-less video
2021-01-17 17:34:48 +01:00
os.remove(targetNoAudio)
else:
2021-01-17 17:34:48 +01:00
os.remove(targetNoAudio)
2020-11-25 02:10:31 -04:00
# remove temp directory
shutil.rmtree("temp")
2020-11-18 10:44:18 +08:00
parser = argparse.ArgumentParser(description='Interpolation for a pair of images')
2020-12-03 18:04:13 +08:00
parser.add_argument('--video', dest='video', type=str, default=None)
2021-01-17 15:24:57 +01:00
parser.add_argument('--output', dest='output', type=str, default=None)
2020-12-03 18:04:13 +08:00
parser.add_argument('--img', dest='img', type=str, default=None)
2020-11-18 10:44:18 +08:00
parser.add_argument('--montage', dest='montage', action='store_true', help='montage origin video')
parser.add_argument('--fp16', dest='fp16', action='store_true', help='fp16 mode for faster and more lightweight inference on cards with Tensor Cores')
2020-12-13 23:41:36 +08:00
parser.add_argument('--UHD', dest='UHD', action='store_true', help='support 4k video')
2020-11-18 10:44:18 +08:00
parser.add_argument('--skip', dest='skip', action='store_true', help='whether to remove static frames before processing')
parser.add_argument('--fps', dest='fps', type=int, default=None)
2020-11-20 19:08:47 +08:00
parser.add_argument('--png', dest='png', action='store_true', help='whether to vid_out png format vid_outs')
parser.add_argument('--ext', dest='ext', type=str, default='mp4', help='vid_out video extension')
2020-11-19 11:07:37 +08:00
parser.add_argument('--exp', dest='exp', type=int, default=1)
2020-11-18 10:44:18 +08:00
args = parser.parse_args()
2020-12-03 18:04:13 +08:00
assert (not args.video is None or not args.img is None)
if not args.img is None:
args.png = True
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch.set_grad_enabled(False)
if torch.cuda.is_available():
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
if(args.fp16):
torch.set_default_tensor_type(torch.cuda.HalfTensor)
2020-11-18 10:44:18 +08:00
2021-02-09 09:32:04 +08:00
from model.RIFE_HDv2 import Model
2020-11-18 10:44:18 +08:00
model = Model()
2021-01-17 15:24:57 +01:00
model.load_model(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'train_log'), -1)
2020-11-18 10:44:18 +08:00
model.eval()
model.device()
2020-12-03 18:04:13 +08:00
if not args.video is None:
videoCapture = cv2.VideoCapture(args.video)
fps = videoCapture.get(cv2.CAP_PROP_FPS)
tot_frame = videoCapture.get(cv2.CAP_PROP_FRAME_COUNT)
videoCapture.release()
if args.fps is None:
fpsNotAssigned = True
2020-12-03 20:17:20 +08:00
args.fps = fps * (2 ** args.exp)
2020-12-03 18:04:13 +08:00
else:
fpsNotAssigned = False
videogen = skvideo.io.vreader(args.video)
lastframe = next(videogen)
fourcc = cv2.VideoWriter_fourcc('m', 'p', '4', 'v')
video_path_wo_ext, ext = os.path.splitext(args.video)
print('{}.{}, {} frames in total, {}FPS to {}FPS'.format(video_path_wo_ext, args.ext, tot_frame, fps, args.fps))
2020-12-03 18:59:50 +08:00
if args.png == False and fpsNotAssigned == True and not args.skip:
print("The audio will be merged after interpolation process")
else:
print("Will not merge audio because using png, fps or skip flag!")
2020-11-25 02:10:31 -04:00
else:
2020-12-03 18:04:13 +08:00
videogen = []
for f in os.listdir(args.img):
if 'png' in f:
videogen.append(f)
tot_frame = len(videogen)
videogen.sort(key= lambda x:int(x[:-4]))
lastframe = cv2.imread(os.path.join(args.img, videogen[0]))[:, :, ::-1].copy()
2021-01-18 17:40:44 +08:00
videogen = videogen[1:]
2020-11-22 14:41:07 +08:00
h, w, _ = lastframe.shape
2021-01-17 15:24:57 +01:00
vid_out_name = None
2020-12-03 18:04:13 +08:00
vid_out = None
2020-11-18 10:44:18 +08:00
if args.png:
2020-11-20 19:08:47 +08:00
if not os.path.exists('vid_out'):
os.mkdir('vid_out')
2020-11-18 10:44:18 +08:00
else:
2021-01-17 15:24:57 +01:00
if args.output is not None:
vid_out_name = args.output
else:
vid_out_name = '{}_{}X_{}fps.{}'.format(video_path_wo_ext, (2 ** args.exp), int(np.round(args.fps)), args.ext)
vid_out = cv2.VideoWriter(vid_out_name, fourcc, args.fps, (w, h))
2020-11-18 10:44:18 +08:00
def clear_write_buffer(user_args, write_buffer):
2020-11-22 19:39:03 +08:00
cnt = 0
2020-11-22 10:32:13 +08:00
while True:
item = write_buffer.get()
2020-11-23 11:49:08 +08:00
if item is None:
break
2020-11-20 19:08:47 +08:00
if user_args.png:
2020-11-22 14:41:07 +08:00
cv2.imwrite('vid_out/{:0>7d}.png'.format(cnt), item[:, :, ::-1])
2020-11-20 19:45:08 +08:00
cnt += 1
2020-11-20 19:08:47 +08:00
else:
2020-11-22 14:41:07 +08:00
vid_out.write(item[:, :, ::-1])
2020-12-03 20:17:20 +08:00
def build_read_buffer(user_args, read_buffer, videogen):
2021-02-12 16:56:53 +08:00
try:
for frame in videogen:
if not user_args.img is None:
frame = cv2.imread(os.path.join(user_args.img, frame))[:, :, ::-1].copy()
if user_args.montage:
frame = frame[:, left: left + w]
read_buffer.put(frame)
except:
pass
read_buffer.put(None)
2020-12-03 20:17:20 +08:00
def make_inference(I0, I1, exp):
global model
2020-12-13 23:41:36 +08:00
middle = model.inference(I0, I1, args.UHD)
2020-12-03 20:17:20 +08:00
if exp == 1:
return [middle]
first_half = make_inference(I0, middle, exp=exp - 1)
second_half = make_inference(middle, I1, exp=exp - 1)
return [*first_half, middle, *second_half]
def pad_image(img):
if(args.fp16):
return F.pad(img, padding).half()
else:
return F.pad(img, padding)
2020-11-18 10:44:18 +08:00
if args.montage:
left = w // 4
w = w // 2
2020-12-13 23:41:36 +08:00
if args.UHD:
ph = ((h - 1) // 64 + 1) * 64
pw = ((w - 1) // 64 + 1) * 64
else:
ph = ((h - 1) // 32 + 1) * 32
pw = ((w - 1) // 32 + 1) * 32
2020-11-18 10:44:18 +08:00
padding = (0, pw - w, 0, ph - h)
pbar = tqdm(total=tot_frame)
skip_frame = 1
if args.montage:
2020-11-22 14:44:27 +08:00
lastframe = lastframe[:, left: left + w]
2020-12-05 00:37:44 +08:00
write_buffer = Queue(maxsize=500)
read_buffer = Queue(maxsize=500)
_thread.start_new_thread(build_read_buffer, (args, read_buffer, videogen))
_thread.start_new_thread(clear_write_buffer, (args, write_buffer))
2020-12-03 18:04:13 +08:00
2020-12-05 11:20:58 +08:00
I1 = torch.from_numpy(np.transpose(lastframe, (2,0,1))).to(device, non_blocking=True).unsqueeze(0).float() / 255.
I1 = pad_image(I1)
while True:
frame = read_buffer.get()
if frame is None:
break
2020-12-05 11:20:58 +08:00
I0 = I1
2020-11-22 14:41:07 +08:00
I1 = torch.from_numpy(np.transpose(frame, (2,0,1))).to(device, non_blocking=True).unsqueeze(0).float() / 255.
I1 = pad_image(I1)
2021-01-18 17:40:44 +08:00
I0_small = F.interpolate(I0, (32, 32), mode='bilinear', align_corners=False)
I1_small = F.interpolate(I1, (32, 32), mode='bilinear', align_corners=False)
ssim = ssim_matlab(I0_small, I1_small)
if ssim > 0.995 and args.skip:
2020-11-22 14:41:07 +08:00
if skip_frame % 100 == 0:
print("Warning: Your video has {} static frames, skipping them may change the duration of the generated video.".format(skip_frame))
skip_frame += 1
2020-11-18 10:44:18 +08:00
pbar.update(1)
2020-11-22 14:41:07 +08:00
continue
2021-01-18 17:40:44 +08:00
if ssim < 0.5:
2020-12-03 20:17:20 +08:00
output = []
step = 1 / (2 ** args.exp)
alpha = 0
2020-12-03 20:17:20 +08:00
for i in range((2 ** args.exp) - 1):
alpha += step
beta = 1-alpha
output.append(torch.from_numpy(np.transpose((cv2.addWeighted(frame[:, :, ::-1], alpha, lastframe[:, :, ::-1], beta, 0)[:, :, ::-1].copy()), (2,0,1))).to(device, non_blocking=True).unsqueeze(0).float() / 255.)
2020-11-22 14:41:07 +08:00
else:
2020-12-03 20:17:20 +08:00
output = make_inference(I0, I1, args.exp)
2020-11-22 14:41:07 +08:00
if args.montage:
write_buffer.put(np.concatenate((lastframe, lastframe), 1))
2020-12-03 20:17:20 +08:00
for mid in output:
2020-12-05 11:55:22 +08:00
mid = (((mid[0] * 255.).byte().cpu().numpy().transpose(1, 2, 0)))
write_buffer.put(np.concatenate((lastframe, mid[:h, :w]), 1))
2020-11-22 14:41:07 +08:00
else:
write_buffer.put(lastframe)
2020-12-03 20:17:20 +08:00
for mid in output:
2020-12-05 11:55:22 +08:00
mid = (((mid[0] * 255.).byte().cpu().numpy().transpose(1, 2, 0)))
write_buffer.put(mid[:h, :w])
2020-11-22 14:41:07 +08:00
pbar.update(1)
lastframe = frame
2020-11-18 10:44:18 +08:00
if args.montage:
write_buffer.put(np.concatenate((lastframe, lastframe), 1))
2020-11-18 10:44:18 +08:00
else:
write_buffer.put(lastframe)
2020-11-23 11:54:25 +08:00
import time
while(not write_buffer.empty()):
2020-11-23 11:54:25 +08:00
time.sleep(0.1)
2020-11-18 10:44:18 +08:00
pbar.close()
2020-11-20 21:07:26 +08:00
if not vid_out is None:
vid_out.release()
2020-11-25 02:10:31 -04:00
# move audio to new video file if appropriate
2020-12-03 18:59:50 +08:00
if args.png == False and fpsNotAssigned == True and not args.skip and not args.video is None:
try:
2021-01-17 15:24:57 +01:00
transferAudio(args.video, vid_out_name)
except:
print("Audio transfer failed. Interpolated video will have no audio")
2021-01-17 17:34:48 +01:00
targetNoAudio = os.path.splitext(vid_out_name)[0] + "_noaudio" + os.path.splitext(vid_out_name)[1]
os.rename(targetNoAudio, vid_out_name)