2020-11-18 10:44:18 +08:00
|
|
|
import os
|
|
|
|
|
import cv2
|
|
|
|
|
import torch
|
|
|
|
|
import argparse
|
|
|
|
|
import numpy as np
|
|
|
|
|
from tqdm import tqdm
|
|
|
|
|
from torch.nn import functional as F
|
|
|
|
|
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
|
if torch.cuda.is_available():
|
|
|
|
|
torch.set_grad_enabled(False)
|
|
|
|
|
torch.backends.cudnn.enabled = True
|
|
|
|
|
torch.backends.cudnn.benchmark = True
|
|
|
|
|
|
|
|
|
|
parser = argparse.ArgumentParser(description='Interpolation for a pair of images')
|
|
|
|
|
parser.add_argument('--video', dest='video', required=True)
|
|
|
|
|
parser.add_argument('--montage', dest='montage', action='store_true', help='montage origin video')
|
|
|
|
|
parser.add_argument('--skip', dest='skip', action='store_true', help='whether to remove static frames before processing')
|
|
|
|
|
parser.add_argument('--fps', dest='fps', type=int, default=None)
|
|
|
|
|
parser.add_argument('--png', dest='png', action='store_true', help='whether to output png format outputs')
|
|
|
|
|
parser.add_argument('--ext', dest='ext', type=str, default='mp4', help='output video extension')
|
2020-11-19 11:07:37 +08:00
|
|
|
parser.add_argument('--exp', dest='exp', type=int, default=1)
|
2020-11-18 10:44:18 +08:00
|
|
|
args = parser.parse_args()
|
2020-11-19 11:07:37 +08:00
|
|
|
assert (args.exp == 1 or args.exp == 2)
|
|
|
|
|
args.exp = 2 ** args.exp
|
2020-11-18 10:44:18 +08:00
|
|
|
|
|
|
|
|
from model.RIFE import Model
|
|
|
|
|
model = Model()
|
|
|
|
|
model.load_model('./train_log')
|
|
|
|
|
model.eval()
|
|
|
|
|
model.device()
|
|
|
|
|
|
|
|
|
|
videoCapture = cv2.VideoCapture(args.video)
|
|
|
|
|
fps = np.round(videoCapture.get(cv2.CAP_PROP_FPS))
|
|
|
|
|
if args.fps is None:
|
2020-11-19 11:07:37 +08:00
|
|
|
args.fps = fps * args.exp
|
2020-11-18 10:44:18 +08:00
|
|
|
success, frame = videoCapture.read()
|
|
|
|
|
h, w, _ = frame.shape
|
|
|
|
|
fourcc = cv2.VideoWriter_fourcc('m', 'p', '4', 'v')
|
|
|
|
|
if args.png:
|
|
|
|
|
if not os.path.exists('output'):
|
|
|
|
|
os.mkdir('output')
|
|
|
|
|
else:
|
|
|
|
|
video_path_wo_ext, ext = os.path.splitext(args.video)
|
2020-11-19 11:07:37 +08:00
|
|
|
output = cv2.VideoWriter('{}_{}X_{}fps.{}'.format(video_path_wo_ext, args.exp, int(np.round(args.fps)), args.ext), fourcc, args.fps, (w, h))
|
2020-11-18 10:44:18 +08:00
|
|
|
|
|
|
|
|
cnt = 0
|
|
|
|
|
def writeframe(frame):
|
|
|
|
|
global cnt
|
|
|
|
|
if args.png:
|
|
|
|
|
cv2.imwrite('output/{:0>7d}.png'.format(cnt), frame)
|
|
|
|
|
cnt += 1
|
|
|
|
|
else:
|
|
|
|
|
output.write(frame)
|
|
|
|
|
if args.montage:
|
|
|
|
|
left = w // 4
|
|
|
|
|
w = w // 2
|
|
|
|
|
ph = ((h - 1) // 32 + 1) * 32
|
|
|
|
|
pw = ((w - 1) // 32 + 1) * 32
|
|
|
|
|
padding = (0, pw - w, 0, ph - h)
|
|
|
|
|
tot_frame = videoCapture.get(cv2.CAP_PROP_FRAME_COUNT)
|
|
|
|
|
print('{}.{}, {} frames in total, {}FPS to {}FPS'.format(video_path_wo_ext, args.ext, tot_frame, fps, args.fps))
|
|
|
|
|
pbar = tqdm(total=tot_frame)
|
|
|
|
|
skip_frame = 1
|
|
|
|
|
if args.montage:
|
|
|
|
|
frame = frame[:, left: left + w]
|
|
|
|
|
while success:
|
|
|
|
|
lastframe = frame
|
|
|
|
|
success, frame = videoCapture.read()
|
|
|
|
|
if success:
|
|
|
|
|
if args.montage:
|
|
|
|
|
frame = frame[:, left: left + w]
|
|
|
|
|
I0 = torch.from_numpy(np.transpose(lastframe, (2,0,1)).astype("float32") / 255.).to(device).unsqueeze(0)
|
|
|
|
|
I1 = torch.from_numpy(np.transpose(frame, (2,0,1)).astype("float32") / 255.).to(device).unsqueeze(0)
|
|
|
|
|
I0 = F.pad(I0, padding)
|
|
|
|
|
I1 = F.pad(I1, padding)
|
|
|
|
|
p = (F.interpolate(I0, (16, 16), mode='bilinear', align_corners=False)
|
|
|
|
|
- F.interpolate(I1, (16, 16), mode='bilinear', align_corners=False)).abs().mean()
|
2020-11-19 11:52:05 +08:00
|
|
|
if p < 5e-3 and args.skip:
|
2020-11-18 10:44:18 +08:00
|
|
|
if skip_frame % 100 == 0:
|
|
|
|
|
print("Warning: Your video has {} static frames, skipping them may change the duration of the generated video.".format(skip_frame))
|
|
|
|
|
skip_frame += 1
|
|
|
|
|
pbar.update(1)
|
|
|
|
|
continue
|
|
|
|
|
if p > 0.2:
|
|
|
|
|
mid1 = lastframe
|
|
|
|
|
mid0 = lastframe
|
|
|
|
|
mid2 = frame
|
|
|
|
|
else:
|
|
|
|
|
mid1 = model.inference(I0, I1)
|
2020-11-19 11:07:37 +08:00
|
|
|
if args.exp == 4:
|
2020-11-18 10:44:18 +08:00
|
|
|
mid = model.inference(torch.cat((I0, mid1), 0), torch.cat((mid1, I1), 0))
|
|
|
|
|
mid1 = (((mid1[0] * 255.).cpu().detach().numpy().transpose(1, 2, 0))).astype('uint8')
|
2020-11-19 11:07:37 +08:00
|
|
|
if args.exp == 4:
|
2020-11-18 10:44:18 +08:00
|
|
|
mid0 = (((mid[0] * 255.).cpu().detach().numpy().transpose(1, 2, 0))).astype('uint8')
|
|
|
|
|
mid2 = (((mid[1]* 255.).cpu().detach().numpy().transpose(1, 2, 0))).astype('uint8')
|
|
|
|
|
if args.montage:
|
|
|
|
|
writeframe(np.concatenate((lastframe, lastframe), 1))
|
2020-11-19 11:07:37 +08:00
|
|
|
if args.exp == 4:
|
2020-11-18 10:44:18 +08:00
|
|
|
writeframe(np.concatenate((lastframe, mid0[:h, :w]), 1))
|
|
|
|
|
writeframe(np.concatenate((lastframe, mid1[:h, :w]), 1))
|
2020-11-19 11:07:37 +08:00
|
|
|
if args.exp == 4:
|
2020-11-18 10:44:18 +08:00
|
|
|
writeframe(np.concatenate((lastframe, mid2[:h, :w]), 1))
|
|
|
|
|
else:
|
|
|
|
|
writeframe(lastframe)
|
2020-11-19 11:07:37 +08:00
|
|
|
if args.exp == 4:
|
2020-11-18 10:44:18 +08:00
|
|
|
writeframe(mid0[:h, :w])
|
|
|
|
|
writeframe(mid1[:h, :w])
|
2020-11-19 11:07:37 +08:00
|
|
|
if args.exp == 4:
|
2020-11-18 10:44:18 +08:00
|
|
|
writeframe(mid2[:h, :w])
|
|
|
|
|
pbar.update(1)
|
|
|
|
|
if args.montage:
|
|
|
|
|
writeframe(np.concatenate((lastframe, lastframe), 1))
|
|
|
|
|
else:
|
|
|
|
|
writeframe(lastframe)
|
|
|
|
|
pbar.close()
|
|
|
|
|
output.release()
|