Files
voice-cloning-collab/encoder_test_preprocess.py

167 lines
6.8 KiB
Python
Raw Normal View History

2022-08-18 09:43:33 +08:00
from datetime import datetime
from functools import partial
from multiprocessing import Pool
from pathlib import Path
import argparse
2022-08-18 09:43:33 +08:00
import numpy as np
from tqdm import tqdm
from encoder import audio
from encoder.config import librispeech_datasets, anglophone_nationalites
from encoder.params_data import *
_AUDIO_EXTENSIONS = ("wav", "flac", "m4a", "mp3")
class DatasetLog:
"""
Registers metadata about the dataset in a text file.
"""
def __init__(self, root, name):
self.text_file = open(Path(root, "Log_%s.txt" % name.replace("/", "_")), "w")
self.sample_data = dict()
start_time = str(datetime.now().strftime("%A %d %B %Y at %H:%M"))
self.write_line("Creating dataset %s on %s" % (name, start_time))
self.write_line("-----")
self._log_params()
def _log_params(self):
from encoder import params_data
self.write_line("Parameter values:")
for param_name in (p for p in dir(params_data) if not p.startswith("__")):
value = getattr(params_data, param_name)
self.write_line("\t%s: %s" % (param_name, value))
self.write_line("-----")
def write_line(self, line):
self.text_file.write("%s\n" % line)
def add_sample(self, **kwargs):
for param_name, value in kwargs.items():
if not param_name in self.sample_data:
self.sample_data[param_name] = []
self.sample_data[param_name].append(value)
def finalize(self):
self.write_line("Statistics:")
for param_name, values in self.sample_data.items():
self.write_line("\t%s:" % param_name)
self.write_line("\t\tmin %.3f, max %.3f" % (np.min(values), np.max(values)))
self.write_line("\t\tmean %.3f, median %.3f" % (np.mean(values), np.median(values)))
self.write_line("-----")
end_time = str(datetime.now().strftime("%A %d %B %Y at %H:%M"))
self.write_line("Finished on %s" % end_time)
self.text_file.close()
def _init_preprocess_dataset(dataset_name, datasets_root, out_dir):
dataset_root = datasets_root.joinpath(dataset_name)
if not dataset_root.exists():
print("Couldn\'t find %s, skipping this dataset." % dataset_root)
return None, None
return dataset_root, DatasetLog(out_dir, dataset_name)
def _preprocess_speaker(speaker_dir: Path, datasets_root: Path, out_dir: Path, skip_existing: bool):
out_dir.mkdir(exist_ok=True)
# Give a name to the speaker that includes its dataset
speaker_name = "_".join(speaker_dir.relative_to(datasets_root).parts)
# Create an output directory with that name, as well as a txt file containing a
# reference to each source file.
speaker_out_dir = out_dir.joinpath(speaker_name)
speaker_out_dir.mkdir(exist_ok=True)
sources_fpath = speaker_out_dir.joinpath("_sources.txt")
# There's a possibility that the preprocessing was interrupted earlier, check if
# there already is a sources file.
if sources_fpath.exists():
try:
with sources_fpath.open("r") as sources_file:
existing_fnames = {line.split(",")[0] for line in sources_file}
except:
existing_fnames = {}
else:
existing_fnames = {}
# Gather all audio files for that speaker recursively
sources_file = sources_fpath.open("a" if skip_existing else "w")
audio_durs = []
for extension in _AUDIO_EXTENSIONS:
for in_fpath in speaker_dir.glob("**/*.%s" % extension):
# Check if the target output file already exists
out_fname = "_".join(in_fpath.relative_to(speaker_dir).parts)
out_fname = out_fname.replace(".%s" % extension, ".npy")
if skip_existing and out_fname in existing_fnames:
continue
# Load and preprocess the waveform
wav = audio.preprocess_wav(in_fpath)
if len(wav) == 0:
continue
# Create the mel spectrogram, discard those that are too short
frames = audio.wav_to_mel_spectrogram(wav)
if len(frames) < partials_n_frames:
continue
out_fpath = speaker_out_dir.joinpath(out_fname)
np.save(out_fpath, frames)
sources_file.write("%s,%s\n" % (out_fname, in_fpath))
audio_durs.append(len(wav) / sampling_rate)
sources_file.close()
return audio_durs
def _preprocess_speaker_dirs(speaker_dirs, dataset_name, datasets_root, out_dir, skip_existing, logger):
print("%s: Preprocessing data for %d speakers." % (dataset_name, len(speaker_dirs)))
# Process the utterances for each speaker
work_fn = partial(_preprocess_speaker, datasets_root=datasets_root, out_dir=out_dir, skip_existing=skip_existing)
with Pool(4) as pool:
tasks = pool.imap(work_fn, speaker_dirs)
for sample_durs in tqdm(tasks, dataset_name, len(speaker_dirs), unit="speakers"):
for sample_dur in sample_durs:
logger.add_sample(duration=sample_dur)
logger.finalize()
print("Done preprocessing %s.\n" % dataset_name)
def preprocess_librispeechtest(datasets_root: Path, out_dir: Path, skip_existing=False):
# preprocess dev dataset
for dataset_name in librispeech_datasets["test"]["other"]:
# Initialize the preprocessing
dataset_root, logger = _init_preprocess_dataset(dataset_name, datasets_root, out_dir)
if not dataset_root:
return
# Preprocess all speakers
speaker_dirs = list(dataset_root.glob("*"))
_preprocess_speaker_dirs(speaker_dirs, dataset_name, datasets_root, out_dir.joinpath("test"), skip_existing, logger)
2022-08-18 09:43:33 +08:00
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Preprocesses audio files from librispeech test other dataset, encodes them as mel spectrograms and "
"writes them to the disk.",
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument("datasets_root", type=Path, help=\
"Path to the directory containing your LibriSpeech/TTS and VoxCeleb datasets.")
parser.add_argument("-o", "--out_dir", type=Path, default=argparse.SUPPRESS, help=\
"Path to the output directory that will contain the mel spectrograms. If left out, "
"defaults to <datasets_root>/SV2TTS/encoder/")
parser.add_argument("-s", "--skip_existing", action="store_true", help=\
"Whether to skip existing output files with the same name. Useful if this script was "
"interrupted.")
args = parser.parse_args()
if not hasattr(args, "out_dir"):
args.out_dir = args.datasets_root.joinpath("SV2TTS", "encoder")
assert args.datasets_root.exists()
args.out_dir.mkdir(exist_ok=True, parents=True)
args = vars(args)
preprocess_librispeechtest(**args)