mirror of
https://github.com/liuhaozhe6788/voice-cloning-collab.git
synced 2025-12-16 11:48:12 +01:00
42 lines
1.7 KiB
Python
42 lines
1.7 KiB
Python
|
|
import argparse
|
||
|
|
import os
|
||
|
|
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
|
||
|
|
from pathlib import Path
|
||
|
|
|
||
|
|
from toolbox import Toolbox
|
||
|
|
from utils.argutils import print_args
|
||
|
|
from utils.default_models import ensure_default_models
|
||
|
|
|
||
|
|
|
||
|
|
if __name__ == '__main__':
|
||
|
|
parser = argparse.ArgumentParser(
|
||
|
|
description="Runs the toolbox.",
|
||
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||
|
|
)
|
||
|
|
parser.add_argument("--run_id", type=str, default="20230609", help= \
|
||
|
|
"Name for this model. By default, training outputs will be stored to saved_models/<run_id>/. If a model state "
|
||
|
|
"from the same run ID was previously saved, the training will restart from there. Pass -f to overwrite saved "
|
||
|
|
"states and restart from scratch.")
|
||
|
|
parser.add_argument("-d", "--datasets_root", type=Path, help= \
|
||
|
|
"Path to the directory containing your datasets. See toolbox/__init__.py for a list of "
|
||
|
|
"supported datasets.", default=None)
|
||
|
|
parser.add_argument("-m", "--models_dir", type=Path, default="saved_models",
|
||
|
|
help="Directory containing all saved models")
|
||
|
|
parser.add_argument("--cpu", action="store_true", help=\
|
||
|
|
"If True, all inference will be done on CPU")
|
||
|
|
parser.add_argument("--seed", type=int, default=None, help=\
|
||
|
|
"Optional random number seed value to make toolbox deterministic.")
|
||
|
|
args = parser.parse_args()
|
||
|
|
arg_dict = vars(args)
|
||
|
|
print_args(args, parser)
|
||
|
|
|
||
|
|
# Hide GPUs from Pytorch to force CPU processing
|
||
|
|
if arg_dict.pop("cpu"):
|
||
|
|
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
|
||
|
|
|
||
|
|
# Remind the user to download pretrained models if needed
|
||
|
|
ensure_default_models(args.run_id, args.models_dir)
|
||
|
|
|
||
|
|
# Launch the toolbox
|
||
|
|
Toolbox(**arg_dict)
|