Files
talemate/tests/test_graphs.py
veguAI c179fcd3eb 0.34.0 (#239)
Visual Agent Refactor + Visual Library
Character Card Import Refactor
Bug fixes and other improvements
2025-12-06 11:19:48 +02:00

292 lines
8.5 KiB
Python

import os
import json
import pytest
import contextvars
import talemate.agents as agents
import pydantic
import talemate.game.engine.nodes.load_definitions # noqa: F401
import talemate.agents.director # noqa: F401
import talemate.agents.memory
from talemate.context import ActiveScene
from talemate.tale_mate import Scene
import talemate.agents.tts.voice_library as voice_library
import talemate.instance as instance
from talemate.game.engine.nodes.core import (
Graph,
GraphState,
)
import structlog
from talemate.game.engine.nodes.layout import load_graph_from_file
from talemate.game.engine.nodes.registry import import_talemate_node_definitions
from talemate.client import ClientBase
from collections import deque
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
TEST_GRAPH_DIR = os.path.join(BASE_DIR, "data", "graphs")
RESULTS_DIR = os.path.join(BASE_DIR, "data", "graphs", "results")
UPDATE_RESULTS = False
log = structlog.get_logger("talemate.test_graphs")
# This runs once for the entire test session
@pytest.fixture(scope="session", autouse=True)
def load_node_definitions():
import_talemate_node_definitions()
def load_test_graph(name) -> Graph:
path = os.path.join(TEST_GRAPH_DIR, f"{name}.json")
graph, _ = load_graph_from_file(path)
return graph
def bootstrap_engine():
voice_library.VOICE_LIBRARY = voice_library.VoiceLibrary(voices={})
for agent_type in agents.AGENT_CLASSES:
if agent_type == "memory":
agent = MockMemoryAgent()
else:
agent = agents.AGENT_CLASSES[agent_type]()
instance.AGENTS[agent_type] = agent
client_reponses = contextvars.ContextVar("client_reponses", default=deque())
class MockClientContext:
async def __aenter__(self):
try:
self.client_reponses = client_reponses.get()
except LookupError:
_client_reponses = deque()
self.token = client_reponses.set(_client_reponses)
self.client_reponses = _client_reponses
return self.client_reponses
async def __aexit__(self, exc_type, exc_value, traceback):
if hasattr(self, "token"):
client_reponses.reset(self.token)
class MockMemoryAgent(talemate.agents.memory.MemoryAgent):
async def add_many(self, items: list[dict]):
pass
async def delete(self, filters: dict):
pass
class MockClient(ClientBase):
def __init__(self, name: str):
self.name = name
self.remote_model_name = "test-model"
self.current_status = "idle"
self.prompt_history = []
@property
def enabled(self):
return True
async def send_prompt(
self, prompt, kind="conversation", finalize=lambda x: x, retries=2, **kwargs
):
"""Override send_prompt to return a pre-defined response instead of calling LLM.
If no responses are configured, returns an empty string.
Records the prompt in prompt_history for later inspection.
"""
response_stack = client_reponses.get()
self.prompt_history.append({"prompt": prompt, "kind": kind})
if not response_stack:
return ""
return response_stack.popleft()
class MockScene(Scene):
@property
def auto_progress(self):
"""
These tests currently assume that auto_progress is True
"""
return True
@pytest.fixture
def mock_scene():
scene = MockScene()
bootstrap_scene(scene)
return scene
@pytest.fixture
def mock_scene_with_assets():
scene = MockScene()
bootstrap_scene(scene)
# Load test assets from the test scene file
test_scene_path = os.path.join(
BASE_DIR, "data", "scenes", "talemate-laboratory", "talemate-lab.json"
)
with open(test_scene_path, "r") as f:
test_scene_data = json.load(f)
# Override scenes_dir to point to test data directory
test_scenes_dir = os.path.join(BASE_DIR, "data", "scenes")
scene.scenes_dir = lambda: test_scenes_dir
scene.project_name = "talemate-laboratory"
# Create library.json file with assets from the scene file
if "assets" in test_scene_data and "assets" in test_scene_data["assets"]:
assets_dict = test_scene_data["assets"]["assets"]
# Ensure assets directory exists
assets_dir = os.path.join(test_scenes_dir, "talemate-laboratory", "assets")
os.makedirs(assets_dir, exist_ok=True)
# Create library.json file
library_path = os.path.join(assets_dir, "library.json")
with open(library_path, "w") as f:
json.dump({"assets": assets_dict}, f, indent=2)
return scene
def bootstrap_scene(mock_scene):
bootstrap_engine()
client = MockClient("test_client")
for agent in instance.AGENTS.values():
agent.client = client
agent.scene = mock_scene
director = instance.get_agent("director")
conversation = instance.get_agent("conversation")
summarizer = instance.get_agent("summarizer")
editor = instance.get_agent("editor")
world_state = instance.get_agent("world_state")
mock_scene.mock_client = client
return {
"director": director,
"conversation": conversation,
"summarizer": summarizer,
"editor": editor,
"world_state": world_state,
}
def serialize_state(obj):
"""Custom JSON serializer for Pydantic models"""
if isinstance(obj, pydantic.BaseModel):
return obj.model_dump()
raise TypeError(f"Object of type {type(obj)} is not JSON serializable")
def normalize_state(data):
"""Convert Pydantic models to dicts for comparison"""
if isinstance(data, pydantic.BaseModel):
return data.model_dump()
elif isinstance(data, dict):
return {k: normalize_state(v) for k, v in data.items()}
elif isinstance(data, list):
return [normalize_state(item) for item in data]
return data
def make_assert_fn(name: str, write_results: bool = False):
async def assert_fn(state: GraphState):
if write_results or not os.path.exists(
os.path.join(RESULTS_DIR, f"{name}.json")
):
with open(os.path.join(RESULTS_DIR, f"{name}.json"), "w") as f:
json.dump(state.shared, f, indent=4, default=serialize_state)
else:
with open(os.path.join(RESULTS_DIR, f"{name}.json"), "r") as f:
expected = json.load(f)
# Normalize state.shared to convert Pydantic models to dicts for comparison
normalized_shared = normalize_state(state.shared)
assert normalized_shared == expected
return assert_fn
def make_graph_test(name: str, write_results: bool = False):
async def test_graph(scene):
assert_fn = make_assert_fn(name, write_results)
def error_handler(state, error: Exception):
raise error
with ActiveScene(scene):
graph = load_test_graph(name)
assert graph is not None
graph.callbacks.append(assert_fn)
graph.error_handlers.append(error_handler)
await graph.execute()
return test_graph
@pytest.mark.asyncio
async def test_graph_core(mock_scene):
fn = make_graph_test("test-harness-core", False)
await fn(mock_scene)
@pytest.mark.asyncio
async def test_graph_data(mock_scene):
fn = make_graph_test("test-harness-data", False)
await fn(mock_scene)
@pytest.mark.asyncio
async def test_graph_scene(mock_scene):
fn = make_graph_test("test-harness-scene", False)
await fn(mock_scene)
@pytest.mark.asyncio
async def test_graph_functions(mock_scene):
fn = make_graph_test("test-harness-functions", False)
await fn(mock_scene)
@pytest.mark.asyncio
async def test_graph_agents(mock_scene):
fn = make_graph_test("test-harness-agents", False)
await fn(mock_scene)
@pytest.mark.asyncio
async def test_graph_prompt(mock_scene):
fn = make_graph_test("test-harness-prompt", False)
async with MockClientContext() as client_reponses:
client_reponses.append("The sum of 1 and 5 is 6.")
client_reponses.append('```json\n{\n "result": 6\n}\n```')
await fn(mock_scene)
@pytest.mark.asyncio
async def test_graph_collectors(mock_scene):
fn = make_graph_test("test-harness-collectors", False)
await fn(mock_scene)
@pytest.mark.asyncio
async def test_graph_context_ids(mock_scene):
fn = make_graph_test("test-harness-context-ids", False)
await fn(mock_scene)
@pytest.mark.asyncio
async def test_graph_assets(mock_scene_with_assets):
fn = make_graph_test("test-harness-assets", False)
await fn(mock_scene_with_assets)