Merge pull request #14370 from daw/feat/add-azure-openai-embeddings-option

feat:Add Azure OpenAI embedding support
This commit is contained in:
Tim Jaeryang Baek
2025-05-30 00:18:55 +04:00
committed by GitHub
6 changed files with 315 additions and 51 deletions

View File

@@ -2184,6 +2184,27 @@ RAG_OPENAI_API_KEY = PersistentConfig(
os.getenv("RAG_OPENAI_API_KEY", OPENAI_API_KEY),
)
RAG_AZURE_OPENAI_BASE_URL = PersistentConfig(
"RAG_AZURE_OPENAI_BASE_URL",
"rag.azure_openai.base_url",
os.getenv("RAG_AZURE_OPENAI_BASE_URL", ""),
)
RAG_AZURE_OPENAI_API_KEY = PersistentConfig(
"RAG_AZURE_OPENAI_API_KEY",
"rag.azure_openai.api_key",
os.getenv("RAG_AZURE_OPENAI_API_KEY", ""),
)
RAG_AZURE_OPENAI_DEPLOYMENT = PersistentConfig(
"RAG_AZURE_OPENAI_DEPLOYMENT",
"rag.azure_openai.deployment",
os.getenv("RAG_AZURE_OPENAI_DEPLOYMENT", ""),
)
RAG_AZURE_OPENAI_VERSION = PersistentConfig(
"RAG_AZURE_OPENAI_VERSION",
"rag.azure_openai.version",
os.getenv("RAG_AZURE_OPENAI_VERSION", ""),
)
RAG_OLLAMA_BASE_URL = PersistentConfig(
"RAG_OLLAMA_BASE_URL",
"rag.ollama.url",

View File

@@ -207,6 +207,10 @@ from open_webui.config import (
RAG_FILE_MAX_SIZE,
RAG_OPENAI_API_BASE_URL,
RAG_OPENAI_API_KEY,
RAG_AZURE_OPENAI_BASE_URL,
RAG_AZURE_OPENAI_API_KEY,
RAG_AZURE_OPENAI_DEPLOYMENT,
RAG_AZURE_OPENAI_VERSION,
RAG_OLLAMA_BASE_URL,
RAG_OLLAMA_API_KEY,
CHUNK_OVERLAP,
@@ -717,6 +721,11 @@ app.state.config.RAG_TEMPLATE = RAG_TEMPLATE
app.state.config.RAG_OPENAI_API_BASE_URL = RAG_OPENAI_API_BASE_URL
app.state.config.RAG_OPENAI_API_KEY = RAG_OPENAI_API_KEY
app.state.config.RAG_AZURE_OPENAI_BASE_URL = RAG_AZURE_OPENAI_BASE_URL
app.state.config.RAG_AZURE_OPENAI_API_KEY = RAG_AZURE_OPENAI_API_KEY
app.state.config.RAG_AZURE_OPENAI_DEPLOYMENT = RAG_AZURE_OPENAI_DEPLOYMENT
app.state.config.RAG_AZURE_OPENAI_VERSION = RAG_AZURE_OPENAI_VERSION
app.state.config.RAG_OLLAMA_BASE_URL = RAG_OLLAMA_BASE_URL
app.state.config.RAG_OLLAMA_API_KEY = RAG_OLLAMA_API_KEY
@@ -811,14 +820,32 @@ app.state.EMBEDDING_FUNCTION = get_embedding_function(
(
app.state.config.RAG_OPENAI_API_BASE_URL
if app.state.config.RAG_EMBEDDING_ENGINE == "openai"
else app.state.config.RAG_OLLAMA_BASE_URL
else (
app.state.config.RAG_OLLAMA_BASE_URL
if app.state.config.RAG_EMBEDDING_ENGINE == "ollama"
else app.state.config.RAG_AZURE_OPENAI_BASE_URL
)
),
(
app.state.config.RAG_OPENAI_API_KEY
if app.state.config.RAG_EMBEDDING_ENGINE == "openai"
else app.state.config.RAG_OLLAMA_API_KEY
else (
app.state.config.RAG_OLLAMA_API_KEY
if app.state.config.RAG_EMBEDDING_ENGINE == "ollama"
else app.state.config.RAG_AZURE_OPENAI_API_KEY
)
),
app.state.config.RAG_EMBEDDING_BATCH_SIZE,
(
app.state.config.RAG_AZURE_OPENAI_DEPLOYMENT
if app.state.config.RAG_EMBEDDING_ENGINE == "azure_openai"
else None
),
(
app.state.config.RAG_AZURE_OPENAI_VERSION
if app.state.config.RAG_EMBEDDING_ENGINE == "azure_openai"
else None
),
)
########################################

View File

@@ -5,6 +5,7 @@ from typing import Optional, Union
import requests
import hashlib
from concurrent.futures import ThreadPoolExecutor
import time
from huggingface_hub import snapshot_download
from langchain.retrievers import ContextualCompressionRetriever, EnsembleRetriever
@@ -400,12 +401,14 @@ def get_embedding_function(
url,
key,
embedding_batch_size,
deployment=None,
version=None,
):
if embedding_engine == "":
return lambda query, prefix=None, user=None: embedding_function.encode(
query, **({"prompt": prefix} if prefix else {})
).tolist()
elif embedding_engine in ["ollama", "openai"]:
elif embedding_engine in ["ollama", "openai", "azure_openai"]:
func = lambda query, prefix=None, user=None: generate_embeddings(
engine=embedding_engine,
model=embedding_model,
@@ -414,6 +417,8 @@ def get_embedding_function(
url=url,
key=key,
user=user,
deployment=deployment,
version=version,
)
def generate_multiple(query, prefix, user, func):
@@ -697,6 +702,61 @@ def generate_openai_batch_embeddings(
return None
def generate_azure_openai_batch_embeddings(
deployment: str,
texts: list[str],
url: str,
key: str = "",
model: str = "",
version: str = "",
prefix: str = None,
user: UserModel = None,
) -> Optional[list[list[float]]]:
try:
log.debug(
f"generate_azure_openai_batch_embeddings:deployment {deployment} batch size: {len(texts)}"
)
json_data = {"input": texts, "model": model}
if isinstance(RAG_EMBEDDING_PREFIX_FIELD_NAME, str) and isinstance(prefix, str):
json_data[RAG_EMBEDDING_PREFIX_FIELD_NAME] = prefix
url = f"{url}/openai/deployments/{deployment}/embeddings?api-version={version}"
for _ in range(5):
r = requests.post(
url,
headers={
"Content-Type": "application/json",
"api-key": key,
**(
{
"X-OpenWebUI-User-Name": user.name,
"X-OpenWebUI-User-Id": user.id,
"X-OpenWebUI-User-Email": user.email,
"X-OpenWebUI-User-Role": user.role,
}
if ENABLE_FORWARD_USER_INFO_HEADERS and user
else {}
),
},
json=json_data,
)
if r.status_code == 429:
retry = float(r.headers.get("Retry-After", "1"))
time.sleep(retry)
continue
r.raise_for_status()
data = r.json()
if "data" in data:
return [elem["embedding"] for elem in data["data"]]
else:
raise Exception("Something went wrong :/")
return None
except Exception as e:
log.exception(f"Error generating azure openai batch embeddings: {e}")
return None
def generate_ollama_batch_embeddings(
model: str,
texts: list[str],
@@ -794,6 +854,32 @@ def generate_embeddings(
model, [text], url, key, prefix, user
)
return embeddings[0] if isinstance(text, str) else embeddings
elif engine == "azure_openai":
deployment = kwargs.get("deployment", "")
version = kwargs.get("version", "")
if isinstance(text, list):
embeddings = generate_azure_openai_batch_embeddings(
deployment,
text,
url,
key,
model,
version,
prefix,
user,
)
else:
embeddings = generate_azure_openai_batch_embeddings(
deployment,
[text],
url,
key,
model,
version,
prefix,
user,
)
return embeddings[0] if isinstance(text, str) else embeddings
import operator

View File

@@ -239,6 +239,12 @@ async def get_embedding_config(request: Request, user=Depends(get_admin_user)):
"url": request.app.state.config.RAG_OLLAMA_BASE_URL,
"key": request.app.state.config.RAG_OLLAMA_API_KEY,
},
"azure_openai_config": {
"url": request.app.state.config.RAG_AZURE_OPENAI_BASE_URL,
"key": request.app.state.config.RAG_AZURE_OPENAI_API_KEY,
"deployment": request.app.state.config.RAG_AZURE_OPENAI_DEPLOYMENT,
"version": request.app.state.config.RAG_AZURE_OPENAI_VERSION,
},
}
@@ -252,9 +258,17 @@ class OllamaConfigForm(BaseModel):
key: str
class AzureOpenAIConfigForm(BaseModel):
url: str
key: str
deployment: str
version: str
class EmbeddingModelUpdateForm(BaseModel):
openai_config: Optional[OpenAIConfigForm] = None
ollama_config: Optional[OllamaConfigForm] = None
azure_openai_config: Optional[AzureOpenAIConfigForm] = None
embedding_engine: str
embedding_model: str
embedding_batch_size: Optional[int] = 1
@@ -271,7 +285,7 @@ async def update_embedding_config(
request.app.state.config.RAG_EMBEDDING_ENGINE = form_data.embedding_engine
request.app.state.config.RAG_EMBEDDING_MODEL = form_data.embedding_model
if request.app.state.config.RAG_EMBEDDING_ENGINE in ["ollama", "openai"]:
if request.app.state.config.RAG_EMBEDDING_ENGINE in ["ollama", "openai", "azure_openai"]:
if form_data.openai_config is not None:
request.app.state.config.RAG_OPENAI_API_BASE_URL = (
form_data.openai_config.url
@@ -288,6 +302,20 @@ async def update_embedding_config(
form_data.ollama_config.key
)
if form_data.azure_openai_config is not None:
request.app.state.config.RAG_AZURE_OPENAI_BASE_URL = (
form_data.azure_openai_config.url
)
request.app.state.config.RAG_AZURE_OPENAI_API_KEY = (
form_data.azure_openai_config.key
)
request.app.state.config.RAG_AZURE_OPENAI_DEPLOYMENT = (
form_data.azure_openai_config.deployment
)
request.app.state.config.RAG_AZURE_OPENAI_VERSION = (
form_data.azure_openai_config.version
)
request.app.state.config.RAG_EMBEDDING_BATCH_SIZE = (
form_data.embedding_batch_size
)
@@ -304,14 +332,32 @@ async def update_embedding_config(
(
request.app.state.config.RAG_OPENAI_API_BASE_URL
if request.app.state.config.RAG_EMBEDDING_ENGINE == "openai"
else request.app.state.config.RAG_OLLAMA_BASE_URL
else (
request.app.state.config.RAG_OLLAMA_BASE_URL
if request.app.state.config.RAG_EMBEDDING_ENGINE == "ollama"
else request.app.state.config.RAG_AZURE_OPENAI_BASE_URL
)
),
(
request.app.state.config.RAG_OPENAI_API_KEY
if request.app.state.config.RAG_EMBEDDING_ENGINE == "openai"
else request.app.state.config.RAG_OLLAMA_API_KEY
else (
request.app.state.config.RAG_OLLAMA_API_KEY
if request.app.state.config.RAG_EMBEDDING_ENGINE == "ollama"
else request.app.state.config.RAG_AZURE_OPENAI_API_KEY
)
),
request.app.state.config.RAG_EMBEDDING_BATCH_SIZE,
(
request.app.state.config.RAG_AZURE_OPENAI_DEPLOYMENT
if request.app.state.config.RAG_EMBEDDING_ENGINE == "azure_openai"
else None
),
(
request.app.state.config.RAG_AZURE_OPENAI_VERSION
if request.app.state.config.RAG_EMBEDDING_ENGINE == "azure_openai"
else None
),
)
return {
@@ -327,6 +373,12 @@ async def update_embedding_config(
"url": request.app.state.config.RAG_OLLAMA_BASE_URL,
"key": request.app.state.config.RAG_OLLAMA_API_KEY,
},
"azure_openai_config": {
"url": request.app.state.config.RAG_AZURE_OPENAI_BASE_URL,
"key": request.app.state.config.RAG_AZURE_OPENAI_API_KEY,
"deployment": request.app.state.config.RAG_AZURE_OPENAI_DEPLOYMENT,
"version": request.app.state.config.RAG_AZURE_OPENAI_VERSION,
},
}
except Exception as e:
log.exception(f"Problem updating embedding model: {e}")
@@ -1129,14 +1181,32 @@ def save_docs_to_vector_db(
(
request.app.state.config.RAG_OPENAI_API_BASE_URL
if request.app.state.config.RAG_EMBEDDING_ENGINE == "openai"
else request.app.state.config.RAG_OLLAMA_BASE_URL
else (
request.app.state.config.RAG_OLLAMA_BASE_URL
if request.app.state.config.RAG_EMBEDDING_ENGINE == "ollama"
else request.app.state.config.RAG_AZURE_OPENAI_BASE_URL
)
),
(
request.app.state.config.RAG_OPENAI_API_KEY
if request.app.state.config.RAG_EMBEDDING_ENGINE == "openai"
else request.app.state.config.RAG_OLLAMA_API_KEY
else (
request.app.state.config.RAG_OLLAMA_API_KEY
if request.app.state.config.RAG_EMBEDDING_ENGINE == "ollama"
else request.app.state.config.RAG_AZURE_OPENAI_API_KEY
)
),
request.app.state.config.RAG_EMBEDDING_BATCH_SIZE,
(
request.app.state.config.RAG_AZURE_OPENAI_DEPLOYMENT
if request.app.state.config.RAG_EMBEDDING_ENGINE == "azure_openai"
else None
),
(
request.app.state.config.RAG_AZURE_OPENAI_VERSION
if request.app.state.config.RAG_EMBEDDING_ENGINE == "azure_openai"
else None
),
)
embeddings = embedding_function(