mirror of
https://github.com/open-webui/open-webui.git
synced 2025-12-16 20:07:49 +01:00
Add batching
This commit is contained in:
@@ -2,16 +2,14 @@
|
||||
|
||||
import json
|
||||
import logging
|
||||
import mimetypes
|
||||
import os
|
||||
import shutil
|
||||
|
||||
import uuid
|
||||
from datetime import datetime
|
||||
from pathlib import Path
|
||||
from typing import Iterator, Optional, Sequence, Union
|
||||
from typing import List, Optional
|
||||
|
||||
from fastapi import Depends, FastAPI, File, Form, HTTPException, UploadFile, status
|
||||
from fastapi import Depends, FastAPI, HTTPException, status
|
||||
from fastapi.middleware.cors import CORSMiddleware
|
||||
from pydantic import BaseModel
|
||||
import tiktoken
|
||||
@@ -52,7 +50,7 @@ from open_webui.apps.retrieval.utils import (
|
||||
query_doc_with_hybrid_search,
|
||||
)
|
||||
|
||||
from open_webui.apps.webui.models.files import Files
|
||||
from open_webui.apps.webui.models.files import FileModel, Files
|
||||
from open_webui.config import (
|
||||
BRAVE_SEARCH_API_KEY,
|
||||
KAGI_SEARCH_API_KEY,
|
||||
@@ -64,7 +62,6 @@ from open_webui.config import (
|
||||
CONTENT_EXTRACTION_ENGINE,
|
||||
CORS_ALLOW_ORIGIN,
|
||||
ENABLE_RAG_HYBRID_SEARCH,
|
||||
ENABLE_RAG_LOCAL_WEB_FETCH,
|
||||
ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION,
|
||||
ENABLE_RAG_WEB_SEARCH,
|
||||
ENV,
|
||||
@@ -86,7 +83,6 @@ from open_webui.config import (
|
||||
RAG_RERANKING_MODEL,
|
||||
RAG_RERANKING_MODEL_AUTO_UPDATE,
|
||||
RAG_RERANKING_MODEL_TRUST_REMOTE_CODE,
|
||||
DEFAULT_RAG_TEMPLATE,
|
||||
RAG_TEMPLATE,
|
||||
RAG_TOP_K,
|
||||
RAG_WEB_SEARCH_CONCURRENT_REQUESTS,
|
||||
@@ -118,10 +114,7 @@ from open_webui.env import (
|
||||
DOCKER,
|
||||
)
|
||||
from open_webui.utils.misc import (
|
||||
calculate_sha256,
|
||||
calculate_sha256_string,
|
||||
extract_folders_after_data_docs,
|
||||
sanitize_filename,
|
||||
)
|
||||
from open_webui.utils.auth import get_admin_user, get_verified_user
|
||||
|
||||
@@ -1047,6 +1040,106 @@ def process_file(
|
||||
)
|
||||
|
||||
|
||||
class BatchProcessFilesForm(BaseModel):
|
||||
files: List[FileModel]
|
||||
collection_name: str
|
||||
|
||||
class BatchProcessFilesResult(BaseModel):
|
||||
file_id: str
|
||||
status: str
|
||||
error: Optional[str] = None
|
||||
|
||||
class BatchProcessFilesResponse(BaseModel):
|
||||
results: List[BatchProcessFilesResult]
|
||||
errors: List[BatchProcessFilesResult]
|
||||
|
||||
@app.post("/process/files/batch")
|
||||
def process_files_batch(
|
||||
form_data: BatchProcessFilesForm,
|
||||
user=Depends(get_verified_user),
|
||||
) -> BatchProcessFilesResponse:
|
||||
"""
|
||||
Process a batch of files and save them to the vector database.
|
||||
"""
|
||||
results: List[BatchProcessFilesResult] = []
|
||||
errors: List[BatchProcessFilesResult] = []
|
||||
collection_name = form_data.collection_name
|
||||
|
||||
|
||||
# Prepare all documents first
|
||||
all_docs: List[Document] = []
|
||||
for file_request in form_data.files:
|
||||
try:
|
||||
file = Files.get_file_by_id(file_request.file_id)
|
||||
if not file:
|
||||
log.error(f"process_files_batch: File {file_request.file_id} not found")
|
||||
raise ValueError(f"File {file_request.file_id} not found")
|
||||
|
||||
text_content = file_request.content
|
||||
|
||||
docs: List[Document] = [
|
||||
Document(
|
||||
page_content=text_content.replace("<br/>", "\n"),
|
||||
metadata={
|
||||
**file.meta,
|
||||
"name": file_request.filename,
|
||||
"created_by": file.user_id,
|
||||
"file_id": file.id,
|
||||
"source": file_request.filename,
|
||||
},
|
||||
)
|
||||
]
|
||||
|
||||
hash = calculate_sha256_string(text_content)
|
||||
Files.update_file_hash_by_id(file.id, hash)
|
||||
Files.update_file_data_by_id(file.id, {"content": text_content})
|
||||
|
||||
all_docs.extend(docs)
|
||||
results.append(BatchProcessFilesResult(
|
||||
file_id=file.id,
|
||||
status="prepared"
|
||||
))
|
||||
|
||||
except Exception as e:
|
||||
log.error(f"process_files_batch: Error processing file {file_request.file_id}: {str(e)}")
|
||||
errors.append(BatchProcessFilesResult(
|
||||
file_id=file_request.file_id,
|
||||
status="failed",
|
||||
error=str(e)
|
||||
))
|
||||
|
||||
# Save all documents in one batch
|
||||
if all_docs:
|
||||
try:
|
||||
save_docs_to_vector_db(
|
||||
docs=all_docs,
|
||||
collection_name=collection_name,
|
||||
add=True
|
||||
)
|
||||
|
||||
# Update all files with collection name
|
||||
for result in results:
|
||||
Files.update_file_metadata_by_id(
|
||||
result.file_id,
|
||||
{"collection_name": collection_name}
|
||||
)
|
||||
result.status = "completed"
|
||||
|
||||
except Exception as e:
|
||||
log.error(f"process_files_batch: Error saving documents to vector DB: {str(e)}")
|
||||
for result in results:
|
||||
result.status = "failed"
|
||||
errors.append(BatchProcessFilesResult(
|
||||
file_id=result.file_id,
|
||||
error=str(e)
|
||||
))
|
||||
|
||||
return BatchProcessFilesResponse(
|
||||
results=results,
|
||||
errors=errors
|
||||
)
|
||||
|
||||
|
||||
class ProcessTextForm(BaseModel):
|
||||
name: str
|
||||
content: str
|
||||
@@ -1509,3 +1602,4 @@ if ENV == "dev":
|
||||
@app.get("/ef/{text}")
|
||||
async def get_embeddings_text(text: str):
|
||||
return {"result": app.state.EMBEDDING_FUNCTION(text)}
|
||||
|
||||
|
||||
Reference in New Issue
Block a user