mirror of
https://github.com/open-webui/open-webui.git
synced 2025-12-16 11:57:51 +01:00
chore: format
This commit is contained in:
@@ -17,7 +17,11 @@ from open_webui.retrieval.vector.connector import VECTOR_DB_CLIENT
|
||||
from open_webui.utils.misc import get_last_user_message
|
||||
from open_webui.models.users import UserModel
|
||||
|
||||
from open_webui.env import SRC_LOG_LEVELS, OFFLINE_MODE, ENABLE_FORWARD_USER_INFO_HEADERS
|
||||
from open_webui.env import (
|
||||
SRC_LOG_LEVELS,
|
||||
OFFLINE_MODE,
|
||||
ENABLE_FORWARD_USER_INFO_HEADERS,
|
||||
)
|
||||
|
||||
log = logging.getLogger(__name__)
|
||||
log.setLevel(SRC_LOG_LEVELS["RAG"])
|
||||
@@ -62,10 +66,7 @@ class VectorSearchRetriever(BaseRetriever):
|
||||
|
||||
|
||||
def query_doc(
|
||||
collection_name: str,
|
||||
query_embedding: list[float],
|
||||
k: int,
|
||||
user: UserModel=None
|
||||
collection_name: str, query_embedding: list[float], k: int, user: UserModel = None
|
||||
):
|
||||
try:
|
||||
result = VECTOR_DB_CLIENT.search(
|
||||
@@ -258,7 +259,7 @@ def get_embedding_function(
|
||||
embedding_function,
|
||||
url,
|
||||
key,
|
||||
embedding_batch_size
|
||||
embedding_batch_size,
|
||||
):
|
||||
if embedding_engine == "":
|
||||
return lambda query, user=None: embedding_function.encode(query).tolist()
|
||||
@@ -269,14 +270,16 @@ def get_embedding_function(
|
||||
text=query,
|
||||
url=url,
|
||||
key=key,
|
||||
user=user
|
||||
user=user,
|
||||
)
|
||||
|
||||
def generate_multiple(query, user, func):
|
||||
if isinstance(query, list):
|
||||
embeddings = []
|
||||
for i in range(0, len(query), embedding_batch_size):
|
||||
embeddings.extend(func(query[i : i + embedding_batch_size], user=user))
|
||||
embeddings.extend(
|
||||
func(query[i : i + embedding_batch_size], user=user)
|
||||
)
|
||||
return embeddings
|
||||
else:
|
||||
return func(query, user)
|
||||
@@ -428,7 +431,11 @@ def get_model_path(model: str, update_model: bool = False):
|
||||
|
||||
|
||||
def generate_openai_batch_embeddings(
|
||||
model: str, texts: list[str], url: str = "https://api.openai.com/v1", key: str = "", user: UserModel = None
|
||||
model: str,
|
||||
texts: list[str],
|
||||
url: str = "https://api.openai.com/v1",
|
||||
key: str = "",
|
||||
user: UserModel = None,
|
||||
) -> Optional[list[list[float]]]:
|
||||
try:
|
||||
r = requests.post(
|
||||
@@ -506,7 +513,13 @@ def generate_embeddings(engine: str, model: str, text: Union[str, list[str]], **
|
||||
)
|
||||
else:
|
||||
embeddings = generate_ollama_batch_embeddings(
|
||||
**{"model": model, "texts": [text], "url": url, "key": key, "user": user}
|
||||
**{
|
||||
"model": model,
|
||||
"texts": [text],
|
||||
"url": url,
|
||||
"key": key,
|
||||
"user": user,
|
||||
}
|
||||
)
|
||||
return embeddings[0] if isinstance(text, str) else embeddings
|
||||
elif engine == "openai":
|
||||
|
||||
Reference in New Issue
Block a user