enh: tiktoken/token splitter support

This commit is contained in:
Timothy J. Baek
2024-10-13 02:07:50 -07:00
parent 8ae605ec4b
commit dff3732fcd
4 changed files with 49 additions and 7 deletions

View File

@@ -11,6 +11,10 @@ ARG USE_CUDA_VER=cu121
# IMPORTANT: If you change the embedding model (sentence-transformers/all-MiniLM-L6-v2) and vice versa, you aren't able to use RAG Chat with your previous documents loaded in the WebUI! You need to re-embed them.
ARG USE_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2
ARG USE_RERANKING_MODEL=""
# Tiktoken encoding name; models to use can be found at https://huggingface.co/models?library=tiktoken
ARG USE_TIKTOKEN_ENCODING_NAME="cl100k_base"
ARG BUILD_HASH=dev-build
# Override at your own risk - non-root configurations are untested
ARG UID=0
@@ -72,6 +76,10 @@ ENV RAG_EMBEDDING_MODEL="$USE_EMBEDDING_MODEL_DOCKER" \
RAG_RERANKING_MODEL="$USE_RERANKING_MODEL_DOCKER" \
SENTENCE_TRANSFORMERS_HOME="/app/backend/data/cache/embedding/models"
## Tiktoken model settings ##
ENV TIKTOKEN_ENCODING_NAME="$USE_TIKTOKEN_ENCODING_NAME" \
TIKTOKEN_CACHE_DIR="/app/backend/data/cache/tiktoken"
## Hugging Face download cache ##
ENV HF_HOME="/app/backend/data/cache/embedding/models"
@@ -131,11 +139,13 @@ RUN pip3 install uv && \
uv pip install --system -r requirements.txt --no-cache-dir && \
python -c "import os; from sentence_transformers import SentenceTransformer; SentenceTransformer(os.environ['RAG_EMBEDDING_MODEL'], device='cpu')" && \
python -c "import os; from faster_whisper import WhisperModel; WhisperModel(os.environ['WHISPER_MODEL'], device='cpu', compute_type='int8', download_root=os.environ['WHISPER_MODEL_DIR'])"; \
python -c "import os; import tiktoken; tiktoken.get_encoding(os.environ['TIKTOKEN_ENCODING_NAME'])"; \
else \
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu --no-cache-dir && \
uv pip install --system -r requirements.txt --no-cache-dir && \
python -c "import os; from sentence_transformers import SentenceTransformer; SentenceTransformer(os.environ['RAG_EMBEDDING_MODEL'], device='cpu')" && \
python -c "import os; from faster_whisper import WhisperModel; WhisperModel(os.environ['WHISPER_MODEL'], device='cpu', compute_type='int8', download_root=os.environ['WHISPER_MODEL_DIR'])"; \
python -c "import os; import tiktoken; tiktoken.get_encoding(os.environ['TIKTOKEN_ENCODING_NAME'])"; \
fi; \
chown -R $UID:$GID /app/backend/data/