mirror of
https://github.com/open-webui/open-webui.git
synced 2025-12-16 11:57:51 +01:00
Merge branch 'dev' into main
This commit is contained in:
@@ -15,13 +15,20 @@ from langchain_core.documents import Document
|
||||
from open_webui.config import VECTOR_DB
|
||||
from open_webui.retrieval.vector.connector import VECTOR_DB_CLIENT
|
||||
from open_webui.utils.misc import get_last_user_message
|
||||
from open_webui.models.users import UserModel
|
||||
|
||||
from open_webui.env import SRC_LOG_LEVELS, OFFLINE_MODE
|
||||
|
||||
from open_webui.env import (
|
||||
SRC_LOG_LEVELS,
|
||||
OFFLINE_MODE,
|
||||
ENABLE_FORWARD_USER_INFO_HEADERS,
|
||||
)
|
||||
from open_webui.config import (
|
||||
RAG_EMBEDDING_QUERY_PREFIX,
|
||||
RAG_EMBEDDING_PASSAGE_PREFIX,
|
||||
RAG_EMBEDDING_PREFIX_FIELD_NAME
|
||||
)
|
||||
|
||||
log = logging.getLogger(__name__)
|
||||
log.setLevel(SRC_LOG_LEVELS["RAG"])
|
||||
|
||||
@@ -65,9 +72,7 @@ class VectorSearchRetriever(BaseRetriever):
|
||||
|
||||
|
||||
def query_doc(
|
||||
collection_name: str,
|
||||
query_embedding: list[float],
|
||||
k: int,
|
||||
collection_name: str, query_embedding: list[float], k: int, user: UserModel = None
|
||||
):
|
||||
try:
|
||||
result = VECTOR_DB_CLIENT.search(
|
||||
@@ -263,27 +268,31 @@ def get_embedding_function(
|
||||
embedding_batch_size,
|
||||
):
|
||||
if embedding_engine == "":
|
||||
return lambda query, prefix: embedding_function.encode(query, prompt = prefix if prefix else None).tolist()
|
||||
return lambda query, prefix, user=None: embedding_function.encode(query, prompt = prefix if prefix else None).tolist()
|
||||
elif embedding_engine in ["ollama", "openai"]:
|
||||
func = lambda query, prefix: generate_embeddings(
|
||||
func = lambda query, prefix, user=None: generate_embeddings(
|
||||
engine=embedding_engine,
|
||||
model=embedding_model,
|
||||
text=query,
|
||||
prefix=prefix,
|
||||
url=url,
|
||||
key=key,
|
||||
user=user,
|
||||
)
|
||||
|
||||
def generate_multiple(query, prefix, func):
|
||||
def generate_multiple(query, prefix, user, func):
|
||||
if isinstance(query, list):
|
||||
embeddings = []
|
||||
for i in range(0, len(query), embedding_batch_size):
|
||||
embeddings.extend(func(query[i : i + embedding_batch_size], prefix))
|
||||
embeddings.extend(
|
||||
func(query[i : i + embedding_batch_size], prefix=prefix, user=user)
|
||||
)
|
||||
return embeddings
|
||||
else:
|
||||
return func(query, prefix)
|
||||
return func(query, prefix, user)
|
||||
return lambda query, prefix, user=None: generate_multiple(query, prefix, user, func)
|
||||
else:
|
||||
raise ValueError(f"Unknown embedding engine: {embedding_engine}")
|
||||
|
||||
return lambda query, prefix: generate_multiple(query, prefix, func)
|
||||
|
||||
|
||||
def get_sources_from_files(
|
||||
@@ -428,9 +437,13 @@ def get_model_path(model: str, update_model: bool = False):
|
||||
|
||||
|
||||
def generate_openai_batch_embeddings(
|
||||
model: str, texts: list[str], url: str = "https://api.openai.com/v1", key: str = "", prefix: str = None
|
||||
model: str,
|
||||
texts: list[str],
|
||||
url: str = "https://api.openai.com/v1",
|
||||
key: str = "",
|
||||
prefix: str = None,
|
||||
user: UserModel = None
|
||||
) -> Optional[list[list[float]]]:
|
||||
|
||||
try:
|
||||
json_data = {
|
||||
"input": texts,
|
||||
@@ -444,6 +457,16 @@ def generate_openai_batch_embeddings(
|
||||
headers={
|
||||
"Content-Type": "application/json",
|
||||
"Authorization": f"Bearer {key}",
|
||||
**(
|
||||
{
|
||||
"X-OpenWebUI-User-Name": user.name,
|
||||
"X-OpenWebUI-User-Id": user.id,
|
||||
"X-OpenWebUI-User-Email": user.email,
|
||||
"X-OpenWebUI-User-Role": user.role,
|
||||
}
|
||||
if ENABLE_FORWARD_USER_INFO_HEADERS and user
|
||||
else {}
|
||||
),
|
||||
},
|
||||
json=json_data,
|
||||
)
|
||||
@@ -459,7 +482,12 @@ def generate_openai_batch_embeddings(
|
||||
|
||||
|
||||
def generate_ollama_batch_embeddings(
|
||||
model: str, texts: list[str], url: str, key: str = "", prefix: str = None
|
||||
model: str,
|
||||
texts: list[str],
|
||||
url: str,
|
||||
key: str = "",
|
||||
prefix: str = None,
|
||||
user: UserModel = None
|
||||
) -> Optional[list[list[float]]]:
|
||||
try:
|
||||
json_data = {
|
||||
@@ -474,6 +502,16 @@ def generate_ollama_batch_embeddings(
|
||||
headers={
|
||||
"Content-Type": "application/json",
|
||||
"Authorization": f"Bearer {key}",
|
||||
**(
|
||||
{
|
||||
"X-OpenWebUI-User-Name": user.name,
|
||||
"X-OpenWebUI-User-Id": user.id,
|
||||
"X-OpenWebUI-User-Email": user.email,
|
||||
"X-OpenWebUI-User-Role": user.role,
|
||||
}
|
||||
if ENABLE_FORWARD_USER_INFO_HEADERS
|
||||
else {}
|
||||
),
|
||||
},
|
||||
json=json_data,
|
||||
)
|
||||
@@ -492,6 +530,7 @@ def generate_ollama_batch_embeddings(
|
||||
def generate_embeddings(engine: str, model: str, text: Union[str, list[str]], prefix: Union[str , None] = None, **kwargs):
|
||||
url = kwargs.get("url", "")
|
||||
key = kwargs.get("key", "")
|
||||
user = kwargs.get("user")
|
||||
|
||||
if prefix is not None and RAG_EMBEDDING_PREFIX_FIELD_NAME is None:
|
||||
if isinstance(text, list):
|
||||
@@ -502,19 +541,18 @@ def generate_embeddings(engine: str, model: str, text: Union[str, list[str]], pr
|
||||
if engine == "ollama":
|
||||
if isinstance(text, list):
|
||||
embeddings = generate_ollama_batch_embeddings(
|
||||
**{"model": model, "texts": text, "url": url, "key": key, "prefix": prefix}
|
||||
**{"model": model, "texts": text, "url": url, "key": key, "prefix": prefix, "user": user}
|
||||
)
|
||||
else:
|
||||
embeddings = generate_ollama_batch_embeddings(
|
||||
**{"model": model, "texts": [text], "url": url, "key": key, "prefix": prefix}
|
||||
**{"model": model, "texts": [text], "url": url, "key": key, "prefix": prefix, "user": user}
|
||||
)
|
||||
return embeddings[0] if isinstance(text, str) else embeddings
|
||||
elif engine == "openai":
|
||||
if isinstance(text, list):
|
||||
embeddings = generate_openai_batch_embeddings(model, text, url, key, prefix)
|
||||
embeddings = generate_openai_batch_embeddings(model, text, url, key, prefix, user)
|
||||
else:
|
||||
embeddings = generate_openai_batch_embeddings(model, [text], url, key, prefix)
|
||||
|
||||
embeddings = generate_openai_batch_embeddings(model, [text], url, key, prefix, user)
|
||||
return embeddings[0] if isinstance(text, str) else embeddings
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user