Files
modelscope/modelscope/hub/api.py
Xingjun.Wang f77b51e3c9 Support upload file and folder in the hub api (#1152)
* update features

* update api

* add upload_file and thread_executor

* update upload file

* update api.py

* add cli for uploading

* run lint

* lint in msdataset

* temp

* add tqdm_desc in thread_executor

* update

* refine upload_file and upload_folder

* add endpoint for cli

* add uploading checker

* add path_or_fileobj and path_in_repo check in upload_file func

* add size limit to lfs: 1MB by default

* update lfs limit size: 10MB

* 5MB lfs limit

* fix test issue

* add pbar for upload_blob; del size_to_chunk_mb; fix allow_patterns and ignore_patterns

* fix commit uploaded blobs

* add update action for folder

* fix issues

* add normal files check

* update

* update

* set normal file size limit to 500MB

* update tqdm
2025-01-14 23:59:53 +08:00

1982 lines
79 KiB
Python

# Copyright (c) Alibaba, Inc. and its affiliates.
# yapf: disable
import datetime
import functools
import io
import os
import pickle
import platform
import re
import shutil
import uuid
from collections import defaultdict
from http import HTTPStatus
from http.cookiejar import CookieJar
from os.path import expanduser
from pathlib import Path
from typing import Any, BinaryIO, Dict, Iterable, List, Optional, Tuple, Union
from urllib.parse import urlencode
import json
import requests
from requests import Session
from requests.adapters import HTTPAdapter, Retry
from tqdm import tqdm
from modelscope.hub.constants import (API_HTTP_CLIENT_MAX_RETRIES,
API_HTTP_CLIENT_TIMEOUT,
API_RESPONSE_FIELD_DATA,
API_RESPONSE_FIELD_EMAIL,
API_RESPONSE_FIELD_GIT_ACCESS_TOKEN,
API_RESPONSE_FIELD_MESSAGE,
API_RESPONSE_FIELD_USERNAME,
DEFAULT_CREDENTIALS_PATH,
DEFAULT_MAX_WORKERS,
MODELSCOPE_CLOUD_ENVIRONMENT,
MODELSCOPE_CLOUD_USERNAME,
MODELSCOPE_REQUEST_ID, ONE_YEAR_SECONDS,
REQUESTS_API_HTTP_METHOD,
TEMPORARY_FOLDER_NAME, DatasetVisibility,
Licenses, ModelVisibility)
from modelscope.hub.errors import (InvalidParameter, NotExistError,
NotLoginException, RequestError,
datahub_raise_on_error,
handle_http_post_error,
handle_http_response, is_ok,
raise_for_http_status, raise_on_error)
from modelscope.hub.git import GitCommandWrapper
from modelscope.hub.repository import Repository
from modelscope.hub.utils.utils import (get_endpoint, get_readable_folder_size,
get_release_datetime,
model_id_to_group_owner_name)
from modelscope.utils.constant import (DEFAULT_DATASET_REVISION,
DEFAULT_MODEL_REVISION,
DEFAULT_REPOSITORY_REVISION,
MASTER_MODEL_BRANCH, META_FILES_FORMAT,
REPO_TYPE_DATASET, REPO_TYPE_MODEL,
REPO_TYPE_SUPPORT, ConfigFields,
DatasetFormations, DatasetMetaFormats,
DatasetVisibilityMap, DownloadChannel,
DownloadMode, Frameworks, ModelFile,
Tasks, VirgoDatasetConfig)
from modelscope.utils.file_utils import get_file_hash, get_file_size
from modelscope.utils.logger import get_logger
from modelscope.utils.repo_utils import (DATASET_LFS_SUFFIX,
DEFAULT_IGNORE_PATTERNS,
MODEL_LFS_SUFFIX, CommitInfo,
CommitOperation, CommitOperationAdd,
RepoUtils)
from modelscope.utils.thread_utils import thread_executor
logger = get_logger()
class HubApi:
"""Model hub api interface.
"""
def __init__(self,
endpoint: Optional[str] = None,
timeout=API_HTTP_CLIENT_TIMEOUT,
max_retries=API_HTTP_CLIENT_MAX_RETRIES):
"""The ModelScope HubApi。
Args:
endpoint (str, optional): The modelscope server http|https address. Defaults to None.
"""
self.endpoint = endpoint if endpoint is not None else get_endpoint()
self.headers = {'user-agent': ModelScopeConfig.get_user_agent()}
self.session = Session()
retry = Retry(
total=max_retries,
read=2,
connect=2,
backoff_factor=1,
status_forcelist=(500, 502, 503, 504),
respect_retry_after_header=False,
)
adapter = HTTPAdapter(max_retries=retry)
self.session.mount('http://', adapter)
self.session.mount('https://', adapter)
# set http timeout
for method in REQUESTS_API_HTTP_METHOD:
setattr(
self.session, method,
functools.partial(
getattr(self.session, method),
timeout=timeout))
self.upload_checker = UploadingCheck()
def login(
self,
access_token: str,
):
"""Login with your SDK access token, which can be obtained from
https://www.modelscope.cn user center.
Args:
access_token (str): user access token on modelscope.
Returns:
cookies: to authenticate yourself to ModelScope open-api
git_token: token to access your git repository.
Note:
You only have to login once within 30 days.
"""
path = f'{self.endpoint}/api/v1/login'
r = self.session.post(
path,
json={'AccessToken': access_token},
headers=self.builder_headers(self.headers))
raise_for_http_status(r)
d = r.json()
raise_on_error(d)
token = d[API_RESPONSE_FIELD_DATA][API_RESPONSE_FIELD_GIT_ACCESS_TOKEN]
cookies = r.cookies
# save token and cookie
ModelScopeConfig.save_token(token)
ModelScopeConfig.save_cookies(cookies)
ModelScopeConfig.save_user_info(
d[API_RESPONSE_FIELD_DATA][API_RESPONSE_FIELD_USERNAME],
d[API_RESPONSE_FIELD_DATA][API_RESPONSE_FIELD_EMAIL])
return d[API_RESPONSE_FIELD_DATA][
API_RESPONSE_FIELD_GIT_ACCESS_TOKEN], cookies
def create_model(self,
model_id: str,
visibility: Optional[int] = ModelVisibility.PUBLIC,
license: Optional[str] = Licenses.APACHE_V2,
chinese_name: Optional[str] = None,
original_model_id: Optional[str] = '') -> str:
"""Create model repo at ModelScope Hub.
Args:
model_id (str): The model id
visibility (int, optional): visibility of the model(1-private, 5-public), default 5.
license (str, optional): license of the model, default none.
chinese_name (str, optional): chinese name of the model.
original_model_id (str, optional): the base model id which this model is trained from
Returns:
Name of the model created
Raises:
InvalidParameter: If model_id is invalid.
ValueError: If not login.
Note:
model_id = {owner}/{name}
"""
if model_id is None:
raise InvalidParameter('model_id is required!')
cookies = ModelScopeConfig.get_cookies()
if cookies is None:
raise ValueError('Token does not exist, please login first.')
path = f'{self.endpoint}/api/v1/models'
owner_or_group, name = model_id_to_group_owner_name(model_id)
body = {
'Path': owner_or_group,
'Name': name,
'ChineseName': chinese_name,
'Visibility': visibility, # server check
'License': license,
'OriginalModelId': original_model_id,
'TrainId': os.environ.get('MODELSCOPE_TRAIN_ID', ''),
}
r = self.session.post(
path,
json=body,
cookies=cookies,
headers=self.builder_headers(self.headers))
handle_http_post_error(r, path, body)
raise_on_error(r.json())
model_repo_url = f'{self.endpoint}/{model_id}'
return model_repo_url
def delete_model(self, model_id: str):
"""Delete model_id from ModelScope.
Args:
model_id (str): The model id.
Raises:
ValueError: If not login.
Note:
model_id = {owner}/{name}
"""
cookies = ModelScopeConfig.get_cookies()
if cookies is None:
raise ValueError('Token does not exist, please login first.')
path = f'{self.endpoint}/api/v1/models/{model_id}'
r = self.session.delete(path,
cookies=cookies,
headers=self.builder_headers(self.headers))
raise_for_http_status(r)
raise_on_error(r.json())
def get_model_url(self, model_id: str):
return f'{self.endpoint}/api/v1/models/{model_id}.git'
def get_model(
self,
model_id: str,
revision: Optional[str] = DEFAULT_MODEL_REVISION,
) -> str:
"""Get model information at ModelScope
Args:
model_id (str): The model id.
revision (str optional): revision of model.
Returns:
The model detail information.
Raises:
NotExistError: If the model is not exist, will throw NotExistError
Note:
model_id = {owner}/{name}
"""
cookies = ModelScopeConfig.get_cookies()
owner_or_group, name = model_id_to_group_owner_name(model_id)
if revision:
path = f'{self.endpoint}/api/v1/models/{owner_or_group}/{name}?Revision={revision}'
else:
path = f'{self.endpoint}/api/v1/models/{owner_or_group}/{name}'
r = self.session.get(path, cookies=cookies,
headers=self.builder_headers(self.headers))
handle_http_response(r, logger, cookies, model_id)
if r.status_code == HTTPStatus.OK:
if is_ok(r.json()):
return r.json()[API_RESPONSE_FIELD_DATA]
else:
raise NotExistError(r.json()[API_RESPONSE_FIELD_MESSAGE])
else:
raise_for_http_status(r)
def repo_exists(
self,
repo_id: str,
*,
repo_type: Optional[str] = None,
) -> bool:
"""
Checks if a repository exists on ModelScope
Args:
repo_id (`str`):
A namespace (user or an organization) and a repo name separated
by a `/`.
repo_type (`str`, *optional*):
`None` or `"model"` if getting repository info from a model. Default is `None`.
TODO: support dataset and studio
Returns:
True if the repository exists, False otherwise.
"""
if (repo_type is not None) and repo_type.lower != REPO_TYPE_MODEL:
raise Exception('Not support repo-type: %s' % repo_type)
if (repo_id is None) or repo_id.count('/') != 1:
raise Exception('Invalid repo_id: %s, must be of format namespace/name' % repo_type)
cookies = ModelScopeConfig.get_cookies()
owner_or_group, name = model_id_to_group_owner_name(repo_id)
path = f'{self.endpoint}/api/v1/models/{owner_or_group}/{name}'
r = self.session.get(path, cookies=cookies,
headers=self.builder_headers(self.headers))
code = handle_http_response(r, logger, cookies, repo_id, False)
if code == 200:
return True
elif code == 404:
return False
else:
logger.warn(f'Check repo_exists return status code {code}.')
raise Exception(
'Failed to check existence of repo: %s, make sure you have access authorization.'
% repo_type)
@staticmethod
def _create_default_config(model_dir):
cfg_file = os.path.join(model_dir, ModelFile.CONFIGURATION)
cfg = {
ConfigFields.framework: Frameworks.torch,
ConfigFields.task: Tasks.other,
}
with open(cfg_file, 'w') as file:
json.dump(cfg, file)
def push_model(self,
model_id: str,
model_dir: str,
visibility: Optional[int] = ModelVisibility.PUBLIC,
license: Optional[str] = Licenses.APACHE_V2,
chinese_name: Optional[str] = None,
commit_message: Optional[str] = 'upload model',
tag: Optional[str] = None,
revision: Optional[str] = DEFAULT_REPOSITORY_REVISION,
original_model_id: Optional[str] = None,
ignore_file_pattern: Optional[Union[List[str], str]] = None,
lfs_suffix: Optional[Union[str, List[str]]] = None):
"""Upload model from a given directory to given repository. A valid model directory
must contain a configuration.json file.
This function upload the files in given directory to given repository. If the
given repository is not exists in remote, it will automatically create it with
given visibility, license and chinese_name parameters. If the revision is also
not exists in remote repository, it will create a new branch for it.
This function must be called before calling HubApi's login with a valid token
which can be obtained from ModelScope's website.
If any error, please upload via git commands.
Args:
model_id (str):
The model id to be uploaded, caller must have write permission for it.
model_dir(str):
The Absolute Path of the finetune result.
visibility(int, optional):
Visibility of the new created model(1-private, 5-public). If the model is
not exists in ModelScope, this function will create a new model with this
visibility and this parameter is required. You can ignore this parameter
if you make sure the model's existence.
license(`str`, defaults to `None`):
License of the new created model(see License). If the model is not exists
in ModelScope, this function will create a new model with this license
and this parameter is required. You can ignore this parameter if you
make sure the model's existence.
chinese_name(`str`, *optional*, defaults to `None`):
chinese name of the new created model.
commit_message(`str`, *optional*, defaults to `None`):
commit message of the push request.
tag(`str`, *optional*, defaults to `None`):
The tag on this commit
revision (`str`, *optional*, default to DEFAULT_MODEL_REVISION):
which branch to push. If the branch is not exists, It will create a new
branch and push to it.
original_model_id (str, optional): The base model id which this model is trained from
ignore_file_pattern (`Union[List[str], str]`, optional): The file pattern to ignore uploading
lfs_suffix (`List[str]`, optional): File types to use LFS to manage. examples: '*.safetensors'.
Raises:
InvalidParameter: Parameter invalid.
NotLoginException: Not login
ValueError: No configuration.json
Exception: Create failed.
"""
if model_id is None:
raise InvalidParameter('model_id cannot be empty!')
if model_dir is None:
raise InvalidParameter('model_dir cannot be empty!')
if not os.path.exists(model_dir) or os.path.isfile(model_dir):
raise InvalidParameter('model_dir must be a valid directory.')
cfg_file = os.path.join(model_dir, ModelFile.CONFIGURATION)
if not os.path.exists(cfg_file):
logger.warning(
f'No {ModelFile.CONFIGURATION} file found in {model_dir}, creating a default one.')
HubApi._create_default_config(model_dir)
cookies = ModelScopeConfig.get_cookies()
if cookies is None:
raise NotLoginException('Must login before upload!')
files_to_save = os.listdir(model_dir)
folder_size = get_readable_folder_size(model_dir)
if ignore_file_pattern is None:
ignore_file_pattern = []
if isinstance(ignore_file_pattern, str):
ignore_file_pattern = [ignore_file_pattern]
if visibility is None or license is None:
raise InvalidParameter('Visibility and License cannot be empty for new model.')
if not self.repo_exists(model_id):
logger.info('Creating new model [%s]' % model_id)
self.create_model(
model_id=model_id,
visibility=visibility,
license=license,
chinese_name=chinese_name,
original_model_id=original_model_id)
tmp_dir = os.path.join(model_dir, TEMPORARY_FOLDER_NAME) # make temporary folder
git_wrapper = GitCommandWrapper()
logger.info(f'Pushing folder {model_dir} as model {model_id}.')
logger.info(f'Total folder size {folder_size}, this may take a while depending on actual pushing size...')
try:
repo = Repository(model_dir=tmp_dir, clone_from=model_id)
branches = git_wrapper.get_remote_branches(tmp_dir)
if revision not in branches:
logger.info('Creating new branch %s' % revision)
git_wrapper.new_branch(tmp_dir, revision)
git_wrapper.checkout(tmp_dir, revision)
files_in_repo = os.listdir(tmp_dir)
for f in files_in_repo:
if f[0] != '.':
src = os.path.join(tmp_dir, f)
if os.path.isfile(src):
os.remove(src)
else:
shutil.rmtree(src, ignore_errors=True)
for f in files_to_save:
if f[0] != '.':
if any([re.search(pattern, f) is not None for pattern in ignore_file_pattern]):
continue
src = os.path.join(model_dir, f)
if os.path.isdir(src):
shutil.copytree(src, os.path.join(tmp_dir, f))
else:
shutil.copy(src, tmp_dir)
if not commit_message:
date = datetime.datetime.now().strftime('%Y_%m_%d_%H_%M_%S')
commit_message = '[automsg] push model %s to hub at %s' % (
model_id, date)
if lfs_suffix is not None:
lfs_suffix_list = [lfs_suffix] if isinstance(lfs_suffix, str) else lfs_suffix
for suffix in lfs_suffix_list:
repo.add_lfs_type(suffix)
repo.push(
commit_message=commit_message,
local_branch=revision,
remote_branch=revision)
if tag is not None:
repo.tag_and_push(tag, tag)
logger.info(f'Successfully push folder {model_dir} to remote repo [{model_id}].')
except Exception:
raise
finally:
shutil.rmtree(tmp_dir, ignore_errors=True)
def list_models(self,
owner_or_group: str,
page_number: Optional[int] = 1,
page_size: Optional[int] = 10) -> dict:
"""List models in owner or group.
Args:
owner_or_group(str): owner or group.
page_number(int, optional): The page number, default: 1
page_size(int, optional): The page size, default: 10
Raises:
RequestError: The request error.
Returns:
dict: {"models": "list of models", "TotalCount": total_number_of_models_in_owner_or_group}
"""
cookies = ModelScopeConfig.get_cookies()
path = f'{self.endpoint}/api/v1/models/'
r = self.session.put(
path,
data='{"Path":"%s", "PageNumber":%s, "PageSize": %s}' %
(owner_or_group, page_number, page_size),
cookies=cookies,
headers=self.builder_headers(self.headers))
handle_http_response(r, logger, cookies, owner_or_group)
if r.status_code == HTTPStatus.OK:
if is_ok(r.json()):
data = r.json()[API_RESPONSE_FIELD_DATA]
return data
else:
raise RequestError(r.json()[API_RESPONSE_FIELD_MESSAGE])
else:
raise_for_http_status(r)
return None
def _check_cookie(self,
use_cookies: Union[bool,
CookieJar] = False) -> CookieJar:
cookies = None
if isinstance(use_cookies, CookieJar):
cookies = use_cookies
elif use_cookies:
cookies = ModelScopeConfig.get_cookies()
if cookies is None:
raise ValueError('Token does not exist, please login first.')
return cookies
def list_model_revisions(
self,
model_id: str,
cutoff_timestamp: Optional[int] = None,
use_cookies: Union[bool, CookieJar] = False) -> List[str]:
"""Get model branch and tags.
Args:
model_id (str): The model id
cutoff_timestamp (int): Tags created before the cutoff will be included.
The timestamp is represented by the seconds elapsed from the epoch time.
use_cookies (Union[bool, CookieJar], optional): If is cookieJar, we will use this cookie, if True,
will load cookie from local. Defaults to False.
Returns:
Tuple[List[str], List[str]]: Return list of branch name and tags
"""
tags_details = self.list_model_revisions_detail(model_id=model_id,
cutoff_timestamp=cutoff_timestamp,
use_cookies=use_cookies)
tags = [x['Revision'] for x in tags_details
] if tags_details else []
return tags
def list_model_revisions_detail(
self,
model_id: str,
cutoff_timestamp: Optional[int] = None,
use_cookies: Union[bool, CookieJar] = False) -> List[str]:
"""Get model branch and tags.
Args:
model_id (str): The model id
cutoff_timestamp (int): Tags created before the cutoff will be included.
The timestamp is represented by the seconds elapsed from the epoch time.
use_cookies (Union[bool, CookieJar], optional): If is cookieJar, we will use this cookie, if True,
will load cookie from local. Defaults to False.
Returns:
Tuple[List[str], List[str]]: Return list of branch name and tags
"""
cookies = self._check_cookie(use_cookies)
if cutoff_timestamp is None:
cutoff_timestamp = get_release_datetime()
path = f'{self.endpoint}/api/v1/models/{model_id}/revisions?EndTime=%s' % cutoff_timestamp
r = self.session.get(path, cookies=cookies,
headers=self.builder_headers(self.headers))
handle_http_response(r, logger, cookies, model_id)
d = r.json()
raise_on_error(d)
info = d[API_RESPONSE_FIELD_DATA]
# tags returned from backend are guaranteed to be ordered by create-time
return info['RevisionMap']['Tags']
def get_branch_tag_detail(self, details, name):
for item in details:
if item['Revision'] == name:
return item
return None
def get_valid_revision_detail(self,
model_id: str,
revision=None,
cookies: Optional[CookieJar] = None):
release_timestamp = get_release_datetime()
current_timestamp = int(round(datetime.datetime.now().timestamp()))
# for active development in library codes (non-release-branches), release_timestamp
# is set to be a far-away-time-in-the-future, to ensure that we shall
# get the master-HEAD version from model repo by default (when no revision is provided)
all_branches_detail, all_tags_detail = self.get_model_branches_and_tags_details(
model_id, use_cookies=False if cookies is None else cookies)
all_branches = [x['Revision'] for x in all_branches_detail] if all_branches_detail else []
all_tags = [x['Revision'] for x in all_tags_detail] if all_tags_detail else []
if release_timestamp > current_timestamp + ONE_YEAR_SECONDS:
if revision is None:
revision = MASTER_MODEL_BRANCH
logger.info(
'Model revision not specified, using default: [%s] version.'
% revision)
if revision not in all_branches and revision not in all_tags:
raise NotExistError('The model: %s has no revision : %s .' % (model_id, revision))
revision_detail = self.get_branch_tag_detail(all_tags_detail, revision)
if revision_detail is None:
revision_detail = self.get_branch_tag_detail(all_branches_detail, revision)
logger.debug('Development mode use revision: %s' % revision)
else:
if revision is not None and revision in all_branches:
revision_detail = self.get_branch_tag_detail(all_branches_detail, revision)
logger.warning('Using branch: %s as version is unstable, use with caution' % revision)
return revision_detail
if len(all_tags_detail) == 0: # use no revision use master as default.
if revision is None or revision == MASTER_MODEL_BRANCH:
revision = MASTER_MODEL_BRANCH
else:
raise NotExistError('The model: %s has no revision: %s !' % (model_id, revision))
revision_detail = self.get_branch_tag_detail(all_branches_detail, revision)
else:
if revision is None: # user not specified revision, use latest revision before release time
revisions_detail = [x for x in
all_tags_detail if x['CreatedAt'] <= release_timestamp] if all_tags_detail else [] # noqa E501
if len(revisions_detail) > 0:
revision = revisions_detail[0]['Revision'] # use latest revision before release time.
revision_detail = revisions_detail[0]
else:
revision = MASTER_MODEL_BRANCH
revision_detail = self.get_branch_tag_detail(all_branches_detail, revision)
vl = '[%s]' % ','.join(all_tags)
logger.warning('Model revision should be specified from revisions: %s' % (vl))
logger.warning('Model revision not specified, use revision: %s' % revision)
else:
# use user-specified revision
if revision not in all_tags:
if revision == MASTER_MODEL_BRANCH:
logger.warning('Using the master branch is fragile, please use it with caution!')
revision_detail = self.get_branch_tag_detail(all_branches_detail, revision)
else:
vl = '[%s]' % ','.join(all_tags)
raise NotExistError('The model: %s has no revision: %s valid are: %s!' %
(model_id, revision, vl))
else:
revision_detail = self.get_branch_tag_detail(all_tags_detail, revision)
logger.info('Use user-specified model revision: %s' % revision)
return revision_detail
def get_valid_revision(self,
model_id: str,
revision=None,
cookies: Optional[CookieJar] = None):
return self.get_valid_revision_detail(model_id=model_id,
revision=revision,
cookies=cookies)['Revision']
def get_model_branches_and_tags_details(
self,
model_id: str,
use_cookies: Union[bool, CookieJar] = False,
) -> Tuple[List[str], List[str]]:
"""Get model branch and tags.
Args:
model_id (str): The model id
use_cookies (Union[bool, CookieJar], optional): If is cookieJar, we will use this cookie, if True,
will load cookie from local. Defaults to False.
Returns:
Tuple[List[str], List[str]]: Return list of branch name and tags
"""
cookies = self._check_cookie(use_cookies)
path = f'{self.endpoint}/api/v1/models/{model_id}/revisions'
r = self.session.get(path, cookies=cookies,
headers=self.builder_headers(self.headers))
handle_http_response(r, logger, cookies, model_id)
d = r.json()
raise_on_error(d)
info = d[API_RESPONSE_FIELD_DATA]
return info['RevisionMap']['Branches'], info['RevisionMap']['Tags']
def get_model_branches_and_tags(
self,
model_id: str,
use_cookies: Union[bool, CookieJar] = False,
) -> Tuple[List[str], List[str]]:
"""Get model branch and tags.
Args:
model_id (str): The model id
use_cookies (Union[bool, CookieJar], optional): If is cookieJar, we will use this cookie, if True,
will load cookie from local. Defaults to False.
Returns:
Tuple[List[str], List[str]]: Return list of branch name and tags
"""
branches_detail, tags_detail = self.get_model_branches_and_tags_details(model_id=model_id,
use_cookies=use_cookies)
branches = [x['Revision'] for x in branches_detail
] if branches_detail else []
tags = [x['Revision'] for x in tags_detail
] if tags_detail else []
return branches, tags
def get_model_files(self,
model_id: str,
revision: Optional[str] = DEFAULT_MODEL_REVISION,
root: Optional[str] = None,
recursive: Optional[str] = False,
use_cookies: Union[bool, CookieJar] = False,
headers: Optional[dict] = {}) -> List[dict]:
"""List the models files.
Args:
model_id (str): The model id
revision (Optional[str], optional): The branch or tag name.
root (Optional[str], optional): The root path. Defaults to None.
recursive (Optional[str], optional): Is recursive list files. Defaults to False.
use_cookies (Union[bool, CookieJar], optional): If is cookieJar, we will use this cookie, if True,
will load cookie from local. Defaults to False.
headers: request headers
Returns:
List[dict]: Model file list.
"""
if revision:
path = '%s/api/v1/models/%s/repo/files?Revision=%s&Recursive=%s' % (
self.endpoint, model_id, revision, recursive)
else:
path = '%s/api/v1/models/%s/repo/files?Recursive=%s' % (
self.endpoint, model_id, recursive)
cookies = self._check_cookie(use_cookies)
if root is not None:
path = path + f'&Root={root}'
headers = self.headers if headers is None else headers
headers['X-Request-ID'] = str(uuid.uuid4().hex)
r = self.session.get(
path, cookies=cookies, headers=headers)
handle_http_response(r, logger, cookies, model_id)
d = r.json()
raise_on_error(d)
files = []
for file in d[API_RESPONSE_FIELD_DATA]['Files']:
if file['Name'] == '.gitignore' or file['Name'] == '.gitattributes':
continue
files.append(file)
return files
def file_exists(
self,
repo_id: str,
filename: str,
*,
revision: Optional[str] = None,
):
"""Get if the specified file exists
Args:
repo_id (`str`): The repo id to use
filename (`str`): The queried filename
revision (`Optional[str]`): The repo revision
Returns:
The query result in bool value
"""
files = self.get_model_files(repo_id, revision=revision)
files = [file['Name'] for file in files]
return filename in files
def create_dataset(self,
dataset_name: str,
namespace: str,
chinese_name: Optional[str] = '',
license: Optional[str] = Licenses.APACHE_V2,
visibility: Optional[int] = DatasetVisibility.PUBLIC,
description: Optional[str] = '') -> str:
if dataset_name is None or namespace is None:
raise InvalidParameter('dataset_name and namespace are required!')
cookies = ModelScopeConfig.get_cookies()
if cookies is None:
raise ValueError('Token does not exist, please login first.')
path = f'{self.endpoint}/api/v1/datasets'
files = {
'Name': (None, dataset_name),
'ChineseName': (None, chinese_name),
'Owner': (None, namespace),
'License': (None, license),
'Visibility': (None, visibility),
'Description': (None, description)
}
r = self.session.post(
path,
files=files,
cookies=cookies,
headers=self.builder_headers(self.headers),
)
handle_http_post_error(r, path, files)
raise_on_error(r.json())
dataset_repo_url = f'{self.endpoint}/datasets/{namespace}/{dataset_name}'
logger.info(f'Create dataset success: {dataset_repo_url}')
return dataset_repo_url
def list_datasets(self):
path = f'{self.endpoint}/api/v1/datasets'
params = {}
r = self.session.get(path, params=params,
headers=self.builder_headers(self.headers))
raise_for_http_status(r)
dataset_list = r.json()[API_RESPONSE_FIELD_DATA]
return [x['Name'] for x in dataset_list]
def get_dataset_id_and_type(self, dataset_name: str, namespace: str):
""" Get the dataset id and type. """
datahub_url = f'{self.endpoint}/api/v1/datasets/{namespace}/{dataset_name}'
cookies = ModelScopeConfig.get_cookies()
r = self.session.get(datahub_url, cookies=cookies)
resp = r.json()
datahub_raise_on_error(datahub_url, resp, r)
dataset_id = resp['Data']['Id']
dataset_type = resp['Data']['Type']
return dataset_id, dataset_type
def get_dataset_infos(self,
dataset_hub_id: str,
revision: str,
files_metadata: bool = False,
timeout: float = 100,
recursive: str = 'True'):
"""
Get dataset infos.
"""
datahub_url = f'{self.endpoint}/api/v1/datasets/{dataset_hub_id}/repo/tree'
params = {'Revision': revision, 'Root': None, 'Recursive': recursive}
cookies = ModelScopeConfig.get_cookies()
if files_metadata:
params['blobs'] = True
r = self.session.get(datahub_url, params=params, cookies=cookies, timeout=timeout)
resp = r.json()
datahub_raise_on_error(datahub_url, resp, r)
return resp
def list_repo_tree(self,
dataset_name: str,
namespace: str,
revision: str,
root_path: str,
recursive: bool = True,
page_number: int = 1,
page_size: int = 100):
dataset_hub_id, dataset_type = self.get_dataset_id_and_type(
dataset_name=dataset_name, namespace=namespace)
recursive = 'True' if recursive else 'False'
datahub_url = f'{self.endpoint}/api/v1/datasets/{dataset_hub_id}/repo/tree'
params = {'Revision': revision if revision else 'master',
'Root': root_path if root_path else '/', 'Recursive': recursive,
'PageNumber': page_number, 'PageSize': page_size}
cookies = ModelScopeConfig.get_cookies()
r = self.session.get(datahub_url, params=params, cookies=cookies)
resp = r.json()
datahub_raise_on_error(datahub_url, resp, r)
return resp
def get_dataset_meta_file_list(self, dataset_name: str, namespace: str, dataset_id: str, revision: str):
""" Get the meta file-list of the dataset. """
datahub_url = f'{self.endpoint}/api/v1/datasets/{dataset_id}/repo/tree?Revision={revision}'
cookies = ModelScopeConfig.get_cookies()
r = self.session.get(datahub_url,
cookies=cookies,
headers=self.builder_headers(self.headers))
resp = r.json()
datahub_raise_on_error(datahub_url, resp, r)
file_list = resp['Data']
if file_list is None:
raise NotExistError(
f'The modelscope dataset [dataset_name = {dataset_name}, namespace = {namespace}, '
f'version = {revision}] dose not exist')
file_list = file_list['Files']
return file_list
@staticmethod
def dump_datatype_file(dataset_type: int, meta_cache_dir: str):
"""
Dump the data_type as a local file, in order to get the dataset
formation without calling the datahub.
More details, please refer to the class
`modelscope.utils.constant.DatasetFormations`.
"""
dataset_type_file_path = os.path.join(meta_cache_dir,
f'{str(dataset_type)}{DatasetFormations.formation_mark_ext.value}')
with open(dataset_type_file_path, 'w') as fp:
fp.write('*** Automatically-generated file, do not modify ***')
def get_dataset_meta_files_local_paths(self, dataset_name: str,
namespace: str,
revision: str,
meta_cache_dir: str, dataset_type: int, file_list: list):
local_paths = defaultdict(list)
dataset_formation = DatasetFormations(dataset_type)
dataset_meta_format = DatasetMetaFormats[dataset_formation]
cookies = ModelScopeConfig.get_cookies()
# Dump the data_type as a local file
HubApi.dump_datatype_file(dataset_type=dataset_type, meta_cache_dir=meta_cache_dir)
for file_info in file_list:
file_path = file_info['Path']
extension = os.path.splitext(file_path)[-1]
if extension in dataset_meta_format:
datahub_url = f'{self.endpoint}/api/v1/datasets/{namespace}/{dataset_name}/repo?' \
f'Revision={revision}&FilePath={file_path}'
r = self.session.get(datahub_url, cookies=cookies)
raise_for_http_status(r)
local_path = os.path.join(meta_cache_dir, file_path)
if os.path.exists(local_path):
logger.warning(
f"Reusing dataset {dataset_name}'s python file ({local_path})"
)
local_paths[extension].append(local_path)
continue
with open(local_path, 'wb') as f:
f.write(r.content)
local_paths[extension].append(local_path)
return local_paths, dataset_formation
@staticmethod
def fetch_meta_files_from_url(url, out_path, chunk_size=1024, mode=DownloadMode.REUSE_DATASET_IF_EXISTS):
"""
Fetch the meta-data files from the url, e.g. csv/jsonl files.
"""
import hashlib
from tqdm.auto import tqdm
import pandas as pd
out_path = os.path.join(out_path, hashlib.md5(url.encode(encoding='UTF-8')).hexdigest())
if mode == DownloadMode.FORCE_REDOWNLOAD and os.path.exists(out_path):
os.remove(out_path)
if os.path.exists(out_path):
logger.info(f'Reusing cached meta-data file: {out_path}')
return out_path
cookies = ModelScopeConfig.get_cookies()
# Make the request and get the response content as TextIO
logger.info('Loading meta-data file ...')
response = requests.get(url, cookies=cookies, stream=True)
total_size = int(response.headers.get('content-length', 0))
progress = tqdm(total=total_size, dynamic_ncols=True)
def get_chunk(resp):
chunk_data = []
for data in resp.iter_lines():
data = data.decode('utf-8')
chunk_data.append(data)
if len(chunk_data) >= chunk_size:
yield chunk_data
chunk_data = []
yield chunk_data
iter_num = 0
with open(out_path, 'a') as f:
for chunk in get_chunk(response):
progress.update(len(chunk))
if url.endswith('jsonl'):
chunk = [json.loads(line) for line in chunk if line.strip()]
if len(chunk) == 0:
continue
if iter_num == 0:
with_header = True
else:
with_header = False
chunk_df = pd.DataFrame(chunk)
chunk_df.to_csv(f, index=False, header=with_header, escapechar='\\')
iter_num += 1
else:
# csv or others
for line in chunk:
f.write(line + '\n')
progress.close()
return out_path
def get_dataset_file_url(
self,
file_name: str,
dataset_name: str,
namespace: str,
revision: Optional[str] = DEFAULT_DATASET_REVISION,
view: Optional[bool] = False,
extension_filter: Optional[bool] = True):
if not file_name or not dataset_name or not namespace:
raise ValueError('Args (file_name, dataset_name, namespace) cannot be empty!')
# Note: make sure the FilePath is the last parameter in the url
params: dict = {'Source': 'SDK', 'Revision': revision, 'FilePath': file_name, 'View': view}
params: str = urlencode(params)
file_url = f'{self.endpoint}/api/v1/datasets/{namespace}/{dataset_name}/repo?{params}'
return file_url
# if extension_filter:
# if os.path.splitext(file_name)[-1] in META_FILES_FORMAT:
# file_url = f'{self.endpoint}/api/v1/datasets/{namespace}/{dataset_name}/repo?'\
# f'Revision={revision}&FilePath={file_name}'
# else:
# file_url = file_name
# return file_url
# else:
# return file_url
def get_dataset_file_url_origin(
self,
file_name: str,
dataset_name: str,
namespace: str,
revision: Optional[str] = DEFAULT_DATASET_REVISION):
if file_name and os.path.splitext(file_name)[-1] in META_FILES_FORMAT:
file_name = f'{self.endpoint}/api/v1/datasets/{namespace}/{dataset_name}/repo?' \
f'Revision={revision}&FilePath={file_name}'
return file_name
def get_dataset_access_config(
self,
dataset_name: str,
namespace: str,
revision: Optional[str] = DEFAULT_DATASET_REVISION):
datahub_url = f'{self.endpoint}/api/v1/datasets/{namespace}/{dataset_name}/' \
f'ststoken?Revision={revision}'
return self.datahub_remote_call(datahub_url)
def get_dataset_access_config_session(
self,
dataset_name: str,
namespace: str,
check_cookie: bool,
revision: Optional[str] = DEFAULT_DATASET_REVISION):
datahub_url = f'{self.endpoint}/api/v1/datasets/{namespace}/{dataset_name}/' \
f'ststoken?Revision={revision}'
if check_cookie:
cookies = self._check_cookie(use_cookies=True)
else:
cookies = ModelScopeConfig.get_cookies()
r = self.session.get(
url=datahub_url,
cookies=cookies,
headers=self.builder_headers(self.headers))
resp = r.json()
raise_on_error(resp)
return resp['Data']
def get_virgo_meta(self, dataset_id: str, version: int = 1) -> dict:
"""
Get virgo dataset meta info.
"""
virgo_endpoint = os.environ.get(VirgoDatasetConfig.env_virgo_endpoint, '')
if not virgo_endpoint:
raise RuntimeError(f'Virgo endpoint is not set in env: {VirgoDatasetConfig.env_virgo_endpoint}')
virgo_dataset_url = f'{virgo_endpoint}/data/set/download'
cookies = requests.utils.dict_from_cookiejar(ModelScopeConfig.get_cookies())
dataset_info = dict(
dataSetId=dataset_id,
dataSetVersion=version
)
data = dict(
data=dataset_info,
)
r = self.session.post(url=virgo_dataset_url,
json=data,
cookies=cookies,
headers=self.builder_headers(self.headers),
timeout=900)
resp = r.json()
if resp['code'] != 0:
raise RuntimeError(f'Failed to get virgo dataset: {resp}')
return resp['data']
def get_dataset_access_config_for_unzipped(self,
dataset_name: str,
namespace: str,
revision: str,
zip_file_name: str):
datahub_url = f'{self.endpoint}/api/v1/datasets/{namespace}/{dataset_name}'
cookies = ModelScopeConfig.get_cookies()
r = self.session.get(url=datahub_url, cookies=cookies,
headers=self.builder_headers(self.headers))
resp = r.json()
# get visibility of the dataset
raise_on_error(resp)
data = resp['Data']
visibility = DatasetVisibilityMap.get(data['Visibility'])
datahub_sts_url = f'{datahub_url}/ststoken?Revision={revision}'
r_sts = self.session.get(url=datahub_sts_url, cookies=cookies,
headers=self.builder_headers(self.headers))
resp_sts = r_sts.json()
raise_on_error(resp_sts)
data_sts = resp_sts['Data']
file_dir = visibility + '-unzipped' + '/' + namespace + '_' + dataset_name + '_' + zip_file_name
data_sts['Dir'] = file_dir
return data_sts
def list_oss_dataset_objects(self, dataset_name, namespace, max_limit,
is_recursive, is_filter_dir, revision):
url = f'{self.endpoint}/api/v1/datasets/{namespace}/{dataset_name}/oss/tree/?' \
f'MaxLimit={max_limit}&Revision={revision}&Recursive={is_recursive}&FilterDir={is_filter_dir}'
cookies = ModelScopeConfig.get_cookies()
resp = self.session.get(url=url, cookies=cookies, timeout=1800)
resp = resp.json()
raise_on_error(resp)
resp = resp['Data']
return resp
def delete_oss_dataset_object(self, object_name: str, dataset_name: str,
namespace: str, revision: str) -> str:
if not object_name or not dataset_name or not namespace or not revision:
raise ValueError('Args cannot be empty!')
url = f'{self.endpoint}/api/v1/datasets/{namespace}/{dataset_name}/oss?Path={object_name}&Revision={revision}'
cookies = ModelScopeConfig.get_cookies()
resp = self.session.delete(url=url, cookies=cookies)
resp = resp.json()
raise_on_error(resp)
resp = resp['Message']
return resp
def delete_oss_dataset_dir(self, object_name: str, dataset_name: str,
namespace: str, revision: str) -> str:
if not object_name or not dataset_name or not namespace or not revision:
raise ValueError('Args cannot be empty!')
url = f'{self.endpoint}/api/v1/datasets/{namespace}/{dataset_name}/oss/prefix?Prefix={object_name}/' \
f'&Revision={revision}'
cookies = ModelScopeConfig.get_cookies()
resp = self.session.delete(url=url, cookies=cookies)
resp = resp.json()
raise_on_error(resp)
resp = resp['Message']
return resp
def datahub_remote_call(self, url):
cookies = ModelScopeConfig.get_cookies()
r = self.session.get(
url,
cookies=cookies,
headers={'user-agent': ModelScopeConfig.get_user_agent()})
resp = r.json()
datahub_raise_on_error(url, resp, r)
return resp['Data']
def dataset_download_statistics(self, dataset_name: str, namespace: str, use_streaming: bool = False) -> None:
is_ci_test = os.getenv('CI_TEST') == 'True'
if dataset_name and namespace and not is_ci_test and not use_streaming:
try:
cookies = ModelScopeConfig.get_cookies()
# Download count
download_count_url = f'{self.endpoint}/api/v1/datasets/{namespace}/{dataset_name}/download/increase'
download_count_resp = self.session.post(download_count_url, cookies=cookies,
headers=self.builder_headers(self.headers))
raise_for_http_status(download_count_resp)
# Download uv
channel = DownloadChannel.LOCAL.value
user_name = ''
if MODELSCOPE_CLOUD_ENVIRONMENT in os.environ:
channel = os.environ[MODELSCOPE_CLOUD_ENVIRONMENT]
if MODELSCOPE_CLOUD_USERNAME in os.environ:
user_name = os.environ[MODELSCOPE_CLOUD_USERNAME]
download_uv_url = f'{self.endpoint}/api/v1/datasets/{namespace}/{dataset_name}/download/uv/' \
f'{channel}?user={user_name}'
download_uv_resp = self.session.post(download_uv_url, cookies=cookies,
headers=self.builder_headers(self.headers))
download_uv_resp = download_uv_resp.json()
raise_on_error(download_uv_resp)
except Exception as e:
logger.error(e)
def builder_headers(self, headers):
return {MODELSCOPE_REQUEST_ID: str(uuid.uuid4().hex),
**headers}
def get_file_base_path(self, repo_id: str) -> str:
_namespace, _dataset_name = repo_id.split('/')
return f'{self.endpoint}/api/v1/datasets/{_namespace}/{_dataset_name}/repo?'
# return f'{endpoint}/api/v1/datasets/{namespace}/{dataset_name}/repo?Revision={revision}&FilePath='
def create_repo(
self,
repo_id: str,
*,
token: Union[str, bool, None] = None,
visibility: Optional[str] = 'public',
repo_type: Optional[str] = REPO_TYPE_MODEL,
chinese_name: Optional[str] = '',
license: Optional[str] = Licenses.APACHE_V2,
) -> str:
# TODO: exist_ok
if not repo_id:
raise ValueError('Repo id cannot be empty!')
if token:
self.login(access_token=token)
else:
logger.warning('No token provided, will use the cached token.')
repo_id_list = repo_id.split('/')
if len(repo_id_list) != 2:
raise ValueError('Invalid repo id, should be in the format of `owner_name/repo_name`')
namespace, repo_name = repo_id_list
if repo_type == REPO_TYPE_MODEL:
visibilities = {k: v for k, v in ModelVisibility.__dict__.items() if not k.startswith('__')}
visibility: int = visibilities.get(visibility.upper())
if visibility is None:
raise ValueError(f'Invalid visibility: {visibility}, '
f'supported visibilities: `public`, `private`, `internal`')
repo_url: str = self.create_model(
model_id=repo_id,
visibility=visibility,
license=license,
chinese_name=chinese_name,
)
elif repo_type == REPO_TYPE_DATASET:
visibilities = {k: v for k, v in DatasetVisibility.__dict__.items() if not k.startswith('__')}
visibility: int = visibilities.get(visibility.upper())
if visibility is None:
raise ValueError(f'Invalid visibility: {visibility}, '
f'supported visibilities: `public`, `private`, `internal`')
repo_url: str = self.create_dataset(
dataset_name=repo_name,
namespace=namespace,
chinese_name=chinese_name,
license=license,
visibility=visibility,
)
else:
raise ValueError(f'Invalid repo type: {repo_type}, supported repos: {REPO_TYPE_SUPPORT}')
return repo_url
def create_commit(
self,
repo_id: str,
operations: Iterable[CommitOperation],
*,
commit_message: str,
commit_description: Optional[str] = None,
token: str = None,
repo_type: Optional[str] = None,
revision: Optional[str] = DEFAULT_REPOSITORY_REVISION,
) -> CommitInfo:
url = f'{self.endpoint}/api/v1/repos/{repo_type}s/{repo_id}/commit/{revision}'
commit_message = commit_message or f'Commit to {repo_id}'
commit_description = commit_description or ''
if token:
self.login(access_token=token)
# Construct payload
payload = self._prepare_commit_payload(
operations=operations,
commit_message=commit_message,
)
# POST
cookies = ModelScopeConfig.get_cookies()
if cookies is None:
raise ValueError('Token does not exist, please login first.')
response = requests.post(
url,
headers=self.builder_headers(self.headers),
data=json.dumps(payload),
cookies=cookies
)
resp = response.json()
if not resp['Success']:
commit_message = resp['Message']
logger.warning(f'{commit_message}')
return CommitInfo(
commit_url=url,
commit_message=commit_message,
commit_description=commit_description,
oid='',
)
def upload_file(
self,
*,
path_or_fileobj: Union[str, Path, bytes, BinaryIO],
path_in_repo: str,
repo_id: str,
token: Union[str, None] = None,
repo_type: Optional[str] = REPO_TYPE_MODEL,
commit_message: Optional[str] = None,
commit_description: Optional[str] = None,
buffer_size_mb: Optional[int] = 1,
tqdm_desc: Optional[str] = '[Uploading]',
disable_tqdm: Optional[bool] = False,
) -> CommitInfo:
if repo_type not in REPO_TYPE_SUPPORT:
raise ValueError(f'Invalid repo type: {repo_type}, supported repos: {REPO_TYPE_SUPPORT}')
if not path_or_fileobj:
raise ValueError('Path or file object cannot be empty!')
if isinstance(path_or_fileobj, (str, Path)):
path_or_fileobj = os.path.abspath(os.path.expanduser(path_or_fileobj))
path_in_repo = path_in_repo or os.path.basename(path_or_fileobj)
else:
# If path_or_fileobj is bytes or BinaryIO, then path_in_repo must be provided
if not path_in_repo:
raise ValueError('Arg `path_in_repo` cannot be empty!')
# Read file content if path_or_fileobj is a file-like object (BinaryIO)
# TODO: to be refined
if isinstance(path_or_fileobj, io.BufferedIOBase):
path_or_fileobj = path_or_fileobj.read()
self.upload_checker.check_file(path_or_fileobj)
self.upload_checker.check_normal_files(
file_path_list=[path_or_fileobj],
repo_type=repo_type,
)
if token:
self.login(access_token=token)
commit_message = (
commit_message if commit_message is not None else f'Upload {path_in_repo} to ModelScope hub'
)
if buffer_size_mb <= 0:
raise ValueError('Buffer size: `buffer_size_mb` must be greater than 0')
hash_info_d: dict = get_file_hash(
file_path_or_obj=path_or_fileobj,
buffer_size_mb=buffer_size_mb,
)
file_size: int = hash_info_d['file_size']
file_hash: str = hash_info_d['file_hash']
upload_res: dict = self._upload_blob(
repo_id=repo_id,
repo_type=repo_type,
sha256=file_hash,
size=file_size,
data=path_or_fileobj,
disable_tqdm=disable_tqdm,
tqdm_desc=tqdm_desc,
)
# Construct commit info and create commit
add_operation: CommitOperationAdd = CommitOperationAdd(
path_in_repo=path_in_repo,
path_or_fileobj=path_or_fileobj,
)
add_operation._upload_mode = 'lfs' if self.upload_checker.is_lfs(path_or_fileobj, repo_type) else 'normal'
add_operation._is_uploaded = upload_res['is_uploaded']
operations = [add_operation]
commit_info: CommitInfo = self.create_commit(
repo_id=repo_id,
operations=operations,
commit_message=commit_message,
commit_description=commit_description,
token=token,
repo_type=repo_type,
)
return commit_info
def upload_folder(
self,
*,
repo_id: str,
folder_path: Union[str, Path],
path_in_repo: Optional[str] = '',
commit_message: Optional[str] = None,
commit_description: Optional[str] = None,
token: Union[str, None] = None,
repo_type: Optional[str] = REPO_TYPE_MODEL,
allow_patterns: Optional[Union[List[str], str]] = None,
ignore_patterns: Optional[Union[List[str], str]] = None,
max_workers: int = DEFAULT_MAX_WORKERS,
) -> CommitInfo:
if repo_type not in REPO_TYPE_SUPPORT:
raise ValueError(f'Invalid repo type: {repo_type}, supported repos: {REPO_TYPE_SUPPORT}')
allow_patterns = allow_patterns if allow_patterns else None
ignore_patterns = ignore_patterns if ignore_patterns else None
self.upload_checker.check_folder(folder_path)
# Ignore .git folder
if ignore_patterns is None:
ignore_patterns = []
elif isinstance(ignore_patterns, str):
ignore_patterns = [ignore_patterns]
ignore_patterns += DEFAULT_IGNORE_PATTERNS
if token:
self.login(access_token=token)
commit_message = (
commit_message if commit_message is not None else f'Upload folder to {repo_id} on ModelScope hub'
)
commit_description = commit_description or 'Uploading folder'
# Get the list of files to upload, e.g. [('data/abc.png', '/path/to/abc.png'), ...]
prepared_repo_objects = HubApi._prepare_upload_folder(
folder_path=folder_path,
path_in_repo=path_in_repo,
allow_patterns=allow_patterns,
ignore_patterns=ignore_patterns,
)
self.upload_checker.check_normal_files(
file_path_list = [item for _, item in prepared_repo_objects],
repo_type=repo_type,
)
@thread_executor(max_workers=max_workers, disable_tqdm=False)
def _upload_items(item_pair, **kwargs):
file_path_in_repo, file_path = item_pair
hash_info_d: dict = get_file_hash(
file_path_or_obj=file_path,
)
file_size: int = hash_info_d['file_size']
file_hash: str = hash_info_d['file_hash']
upload_res: dict = self._upload_blob(
repo_id=repo_id,
repo_type=repo_type,
sha256=file_hash,
size=file_size,
data=file_path,
disable_tqdm=False if file_size > 10 * 1024 * 1024 else True,
)
return {
'file_path_in_repo': file_path_in_repo,
'file_path': file_path,
'is_uploaded': upload_res['is_uploaded'],
}
uploaded_items_list = _upload_items(
prepared_repo_objects,
repo_id=repo_id,
token=token,
repo_type=repo_type,
commit_message=commit_message,
commit_description=commit_description,
buffer_size_mb=1,
tqdm_desc='[Uploading]',
disable_tqdm=False,
)
logger.info(f'Uploading folder to {repo_id} finished')
# Construct commit info and create commit
operations = []
for item_d in uploaded_items_list:
prepared_path_in_repo: str = item_d['file_path_in_repo']
prepared_file_path: str = item_d['file_path']
is_uploaded: bool = item_d['is_uploaded']
opt = CommitOperationAdd(
path_in_repo=prepared_path_in_repo,
path_or_fileobj=prepared_file_path,
)
# check normal or lfs
opt._upload_mode = 'lfs' if self.upload_checker.is_lfs(prepared_file_path, repo_type) else 'normal'
opt._is_uploaded = is_uploaded
operations.append(opt)
self.create_commit(
repo_id=repo_id,
operations=operations,
commit_message=commit_message,
commit_description=commit_description,
token=token,
repo_type=repo_type,
)
# Construct commit info
commit_url = f'{self.endpoint}/api/v1/{repo_type}s/{repo_id}/commit/{DEFAULT_REPOSITORY_REVISION}'
return CommitInfo(
commit_url=commit_url,
commit_message=commit_message,
commit_description=commit_description,
oid='')
def _upload_blob(
self,
*,
repo_id: str,
repo_type: str,
sha256: str,
size: int,
data: Union[str, Path, bytes, BinaryIO],
disable_tqdm: Optional[bool] = False,
tqdm_desc: Optional[str] = '[Uploading]',
buffer_size_mb: Optional[int] = 1,
) -> dict:
res_d: dict = dict(
url=None,
is_uploaded=False,
status_code=None,
status_msg=None,
)
objects = [{'oid': sha256, 'size': size}]
upload_objects = self._validate_blob(
repo_id=repo_id,
repo_type=repo_type,
objects=objects,
)
# upload_object: {'url': 'xxx', 'oid': 'xxx'}
upload_object = upload_objects[0] if len(upload_objects) == 1 else None
if upload_object is None:
logger.info(f'Blob {sha256} has already uploaded, reuse it.')
res_d['is_uploaded'] = True
return res_d
cookies = ModelScopeConfig.get_cookies()
cookies = dict(cookies) if cookies else None
if cookies is None:
raise ValueError('Token does not exist, please login first.')
self.headers.update({'Cookie': f"m_session_id={cookies['m_session_id']}"})
headers = self.builder_headers(self.headers)
def read_in_chunks(file_object, pbar, chunk_size=buffer_size_mb * 1024 * 1024):
"""Lazy function (generator) to read a file piece by piece."""
while True:
ck = file_object.read(chunk_size)
if not ck:
break
pbar.update(len(ck))
yield ck
with tqdm(
total=size,
unit='B',
unit_scale=True,
desc=tqdm_desc,
disable=disable_tqdm
) as pbar:
if isinstance(data, (str, Path)):
with open(data, 'rb') as f:
response = requests.put(
upload_object['url'],
headers=headers,
data=read_in_chunks(f, pbar)
)
elif isinstance(data, bytes):
response = requests.put(
upload_object['url'],
headers=headers,
data=read_in_chunks(io.BytesIO(data), pbar)
)
elif isinstance(data, io.BufferedIOBase):
response = requests.put(
upload_object['url'],
headers=headers,
data=read_in_chunks(data, pbar)
)
else:
raise ValueError('Invalid data type to upload')
resp = response.json()
raise_on_error(resp)
res_d['url'] = upload_object['url']
res_d['status_code'] = resp['Code']
res_d['status_msg'] = resp['Message']
return res_d
def _validate_blob(
self,
*,
repo_id: str,
repo_type: str,
objects: List[Dict[str, Any]],
) -> List[Dict[str, Any]]:
"""
Check the blob has already uploaded.
True -- uploaded; False -- not uploaded.
Args:
repo_id (str): The repo id ModelScope.
repo_type (str): The repo type. `dataset`, `model`, etc.
objects (List[Dict[str, Any]]): The objects to check.
oid (str): The sha256 hash value.
size (int): The size of the blob.
Returns:
List[Dict[str, Any]]: The result of the check.
"""
# construct URL
url = f'{self.endpoint}/api/v1/repos/{repo_type}s/{repo_id}/info/lfs/objects/batch'
# build payload
payload = {
'operation': 'upload',
'objects': objects,
}
cookies = ModelScopeConfig.get_cookies()
if cookies is None:
raise ValueError('Token does not exist, please login first.')
response = requests.post(
url,
headers=self.builder_headers(self.headers),
data=json.dumps(payload),
cookies=cookies
)
resp = response.json()
raise_on_error(resp)
upload_objects = [] # list of objects to upload, [{'url': 'xxx', 'oid': 'xxx'}, ...]
resp_objects = resp['Data']['objects']
for obj in resp_objects:
upload_objects.append(
{'url': obj['actions']['upload']['href'],
'oid': obj['oid']}
)
return upload_objects
@staticmethod
def _prepare_upload_folder(
folder_path: Union[str, Path],
path_in_repo: str,
allow_patterns: Optional[Union[List[str], str]] = None,
ignore_patterns: Optional[Union[List[str], str]] = None,
) -> List[Union[tuple, list]]:
folder_path = Path(folder_path).expanduser().resolve()
if not folder_path.is_dir():
raise ValueError(f"Provided path: '{folder_path}' is not a directory")
# List files from folder
relpath_to_abspath = {
path.relative_to(folder_path).as_posix(): path
for path in sorted(folder_path.glob('**/*')) # sorted to be deterministic
if path.is_file()
}
# Filter files
filtered_repo_objects = list(
RepoUtils.filter_repo_objects(
relpath_to_abspath.keys(), allow_patterns=allow_patterns, ignore_patterns=ignore_patterns
)
)
prefix = f"{path_in_repo.strip('/')}/" if path_in_repo else ''
prepared_repo_objects = [
(prefix + relpath, str(relpath_to_abspath[relpath]))
for relpath in filtered_repo_objects
]
return prepared_repo_objects
@staticmethod
def _prepare_commit_payload(
operations: Iterable[CommitOperation],
commit_message: str,
) -> Dict[str, Any]:
"""
Prepare the commit payload to be sent to the ModelScope hub.
"""
payload = {
'commit_message': commit_message,
'actions': []
}
nb_ignored_files = 0
# 2. Send operations, one per line
for operation in operations:
# Skip ignored files
if isinstance(operation, CommitOperationAdd) and operation._should_ignore:
logger.debug(f"Skipping file '{operation.path_in_repo}' in commit (ignored by gitignore file).")
nb_ignored_files += 1
continue
# 2.a. Case adding a normal file
if isinstance(operation, CommitOperationAdd) and operation._upload_mode == 'normal':
commit_action = {
'action': 'update' if operation._is_uploaded else 'create',
'path': operation.path_in_repo,
'type': 'normal',
'size': operation.upload_info.size,
'sha256': '',
'content': operation.b64content().decode(),
'encoding': 'base64',
}
payload['actions'].append(commit_action)
# 2.b. Case adding an LFS file
elif isinstance(operation, CommitOperationAdd) and operation._upload_mode == 'lfs':
commit_action = {
'action': 'update' if operation._is_uploaded else 'create',
'path': operation.path_in_repo,
'type': 'lfs',
'size': operation.upload_info.size,
'sha256': operation.upload_info.sha256,
'content': '',
'encoding': '',
}
payload['actions'].append(commit_action)
else:
raise ValueError(
f'Unknown operation to commit. Operation: {operation}. Upload mode:'
f" {getattr(operation, '_upload_mode', None)}"
)
if nb_ignored_files > 0:
logger.info(f'Skipped {nb_ignored_files} file(s) in commit (ignored by gitignore file).')
return payload
class ModelScopeConfig:
path_credential = expanduser(DEFAULT_CREDENTIALS_PATH)
COOKIES_FILE_NAME = 'cookies'
GIT_TOKEN_FILE_NAME = 'git_token'
USER_INFO_FILE_NAME = 'user'
USER_SESSION_ID_FILE_NAME = 'session'
cookie_expired_warning = False
@staticmethod
def make_sure_credential_path_exist():
os.makedirs(ModelScopeConfig.path_credential, exist_ok=True)
@staticmethod
def save_cookies(cookies: CookieJar):
ModelScopeConfig.make_sure_credential_path_exist()
with open(
os.path.join(ModelScopeConfig.path_credential,
ModelScopeConfig.COOKIES_FILE_NAME), 'wb+') as f:
pickle.dump(cookies, f)
@staticmethod
def get_cookies():
cookies_path = os.path.join(ModelScopeConfig.path_credential,
ModelScopeConfig.COOKIES_FILE_NAME)
if os.path.exists(cookies_path):
with open(cookies_path, 'rb') as f:
cookies = pickle.load(f)
for cookie in cookies:
if cookie.is_expired() and not ModelScopeConfig.cookie_expired_warning:
ModelScopeConfig.cookie_expired_warning = True
logger.debug(
'Authentication has expired, '
'please re-login with modelscope login --token "YOUR_SDK_TOKEN" '
'if you need to access private models or datasets.')
return None
return cookies
return None
@staticmethod
def get_user_session_id():
session_path = os.path.join(ModelScopeConfig.path_credential,
ModelScopeConfig.USER_SESSION_ID_FILE_NAME)
session_id = ''
if os.path.exists(session_path):
with open(session_path, 'rb') as f:
session_id = str(f.readline().strip(), encoding='utf-8')
return session_id
if session_id == '' or len(session_id) != 32:
session_id = str(uuid.uuid4().hex)
ModelScopeConfig.make_sure_credential_path_exist()
with open(session_path, 'w+') as wf:
wf.write(session_id)
return session_id
@staticmethod
def save_token(token: str):
ModelScopeConfig.make_sure_credential_path_exist()
with open(
os.path.join(ModelScopeConfig.path_credential,
ModelScopeConfig.GIT_TOKEN_FILE_NAME), 'w+') as f:
f.write(token)
@staticmethod
def save_user_info(user_name: str, user_email: str):
ModelScopeConfig.make_sure_credential_path_exist()
with open(
os.path.join(ModelScopeConfig.path_credential,
ModelScopeConfig.USER_INFO_FILE_NAME), 'w+') as f:
f.write('%s:%s' % (user_name, user_email))
@staticmethod
def get_user_info() -> Tuple[str, str]:
try:
with open(
os.path.join(ModelScopeConfig.path_credential,
ModelScopeConfig.USER_INFO_FILE_NAME),
'r',
encoding='utf-8') as f:
info = f.read()
return info.split(':')[0], info.split(':')[1]
except FileNotFoundError:
pass
return None, None
@staticmethod
def get_token() -> Optional[str]:
"""
Get token or None if not existent.
Returns:
`str` or `None`: The token, `None` if it doesn't exist.
"""
token = None
try:
with open(
os.path.join(ModelScopeConfig.path_credential,
ModelScopeConfig.GIT_TOKEN_FILE_NAME),
'r',
encoding='utf-8') as f:
token = f.read()
except FileNotFoundError:
pass
return token
@staticmethod
def get_user_agent(user_agent: Union[Dict, str, None] = None, ) -> str:
"""Formats a user-agent string with basic info about a request.
Args:
user_agent (`str`, `dict`, *optional*):
The user agent info in the form of a dictionary or a single string.
Returns:
The formatted user-agent string.
"""
# include some more telemetrics when executing in dedicated
# cloud containers
env = 'custom'
if MODELSCOPE_CLOUD_ENVIRONMENT in os.environ:
env = os.environ[MODELSCOPE_CLOUD_ENVIRONMENT]
user_name = 'unknown'
if MODELSCOPE_CLOUD_USERNAME in os.environ:
user_name = os.environ[MODELSCOPE_CLOUD_USERNAME]
from modelscope import __version__
ua = 'modelscope/%s; python/%s; session_id/%s; platform/%s; processor/%s; env/%s; user/%s' % (
__version__,
platform.python_version(),
ModelScopeConfig.get_user_session_id(),
platform.platform(),
platform.processor(),
env,
user_name,
)
if isinstance(user_agent, dict):
ua += '; ' + '; '.join(f'{k}/{v}' for k, v in user_agent.items())
elif isinstance(user_agent, str):
ua += '; ' + user_agent
return ua
class UploadingCheck:
def __init__(
self,
max_file_count: int = 100_000,
max_file_count_in_dir: int = 10_000,
max_file_size: int = 50 * 1024 ** 3,
lfs_size_limit: int = 5 * 1024 * 1024,
normal_file_size_total_limit: int = 500 * 1024 * 1024,
):
self.max_file_count = max_file_count
self.max_file_count_in_dir = max_file_count_in_dir
self.max_file_size = max_file_size
self.lfs_size_limit = lfs_size_limit
self.normal_file_size_total_limit = normal_file_size_total_limit
def check_file(self, file_path_or_obj):
if isinstance(file_path_or_obj, (str, Path)):
if not os.path.exists(file_path_or_obj):
raise ValueError(f'File {file_path_or_obj} does not exist')
file_size: int = get_file_size(file_path_or_obj)
if file_size > self.max_file_size:
raise ValueError(f'File exceeds size limit: {self.max_file_size / (1024 ** 3)} GB')
def check_folder(self, folder_path: Union[str, Path]):
file_count = 0
dir_count = 0
if isinstance(folder_path, str):
folder_path = Path(folder_path)
for item in folder_path.iterdir():
if item.is_file():
file_count += 1
elif item.is_dir():
dir_count += 1
# Count items in subdirectories recursively
sub_file_count, sub_dir_count = self.check_folder(item)
if (sub_file_count + sub_dir_count) > self.max_file_count_in_dir:
raise ValueError(f'Directory {item} contains {sub_file_count + sub_dir_count} items '
f'and exceeds limit: {self.max_file_count_in_dir}')
file_count += sub_file_count
dir_count += sub_dir_count
if file_count > self.max_file_count:
raise ValueError(f'Total file count {file_count} and exceeds limit: {self.max_file_count}')
return file_count, dir_count
def is_lfs(self, file_path_or_obj: Union[str, Path, bytes, BinaryIO], repo_type: str) -> bool:
hit_lfs_suffix = True
if isinstance(file_path_or_obj, (str, Path)):
file_path_or_obj = Path(file_path_or_obj)
if not file_path_or_obj.exists():
raise ValueError(f'File {file_path_or_obj} does not exist')
if repo_type == REPO_TYPE_MODEL:
if file_path_or_obj.suffix not in MODEL_LFS_SUFFIX:
hit_lfs_suffix = False
elif repo_type == REPO_TYPE_DATASET:
if file_path_or_obj.suffix not in DATASET_LFS_SUFFIX:
hit_lfs_suffix = False
else:
raise ValueError(f'Invalid repo type: {repo_type}, supported repos: {REPO_TYPE_SUPPORT}')
file_size: int = get_file_size(file_path_or_obj)
return file_size > self.lfs_size_limit or hit_lfs_suffix
def check_normal_files(self, file_path_list: List[Union[str, Path]], repo_type: str) -> None:
normal_file_list = [item for item in file_path_list if not self.is_lfs(item, repo_type)]
total_size = sum([get_file_size(item) for item in normal_file_list])
if total_size > self.normal_file_size_total_limit:
raise ValueError(f'Total size of non-lfs files {total_size/(1024 * 1024)}MB '
f'and exceeds limit: {self.normal_file_size_total_limit/(1024 * 1024)}MB')