Files
modelscope/tests/pipelines/test_text_to_speech.py

113 lines
4.2 KiB
Python

# Copyright (c) Alibaba, Inc. and its affiliates.
import unittest
# NOTICE: Tensorflow 1.15 seems not so compatible with pytorch.
# A segmentation fault may be raise by pytorch cpp library
# if 'import tensorflow' in front of 'import torch'.
# Putting a 'import torch' here can bypass this incompatibility.
import torch
from modelscope.outputs import OutputKeys
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
from modelscope.utils.logger import get_logger
from modelscope.utils.test_utils import test_level
import tensorflow as tf # isort:skip
logger = get_logger()
class TextToSpeechSambertHifigan16kPipelineTest(unittest.TestCase):
def setUp(self) -> None:
self.task = Tasks.text_to_speech
self.zhcn_text = '今天北京天气怎么样'
self.en_text = 'How is the weather in Beijing?'
self.kokr_text = '오늘날씨가어때요'
self.ru_text = 'Какая сегодня погода?'
self.test_model_name = [
'chuangirl', 'jiajia', 'xiaoda', 'kyong', 'masha', 'pretrain_16k',
'pretrain_24k', 'zhitian_emo', 'zhizhe_emo', 'zhiyan_emo',
'zhibei_emo', 'zhcn_16k', 'luca', 'luna', 'andy', 'annie',
'engb_16k', 'enus_16k'
]
self.test_models = [{
'model':
'speech_tts/speech_sambert-hifigan_tts_chuangirl_Sichuan_16k',
'text': self.zhcn_text
}, {
'model':
'speech_tts/speech_sambert-hifigan_tts_jiajia_Cantonese_16k',
'text': self.zhcn_text
}, {
'model':
'speech_tts/speech_sambert-hifigan_tts_xiaoda_WuuShanghai_16k',
'text': self.zhcn_text
}, {
'model': 'speech_tts/speech_sambert-hifigan_tts_kyong_Korean_16k',
'text': self.kokr_text
}, {
'model': 'speech_tts/speech_sambert-hifigan_tts_masha_Russian_16k',
'text': self.ru_text
}, {
'model':
'speech_tts/speech_sambert-hifigan_tts_zh-cn_multisp_pretrain_16k',
'text': self.zhcn_text
}, {
'model':
'speech_tts/speech_sambert-hifigan_tts_zh-cn_multisp_pretrain_24k',
'text': self.zhcn_text,
}, {
'model': 'damo/speech_sambert-hifigan_tts_zhitian_emo_zh-cn_16k',
'text': self.zhcn_text
}, {
'model': 'damo/speech_sambert-hifigan_tts_zhizhe_emo_zh-cn_16k',
'text': self.zhcn_text
}, {
'model': 'damo/speech_sambert-hifigan_tts_zhiyan_emo_zh-cn_16k',
'text': self.zhcn_text
}, {
'model': 'damo/speech_sambert-hifigan_tts_zhibei_emo_zh-cn_16k',
'text': self.zhcn_text
}, {
'model': 'damo/speech_sambert-hifigan_tts_zh-cn_16k',
'text': self.zhcn_text
}, {
'model': 'damo/speech_sambert-hifigan_tts_luca_en-gb_16k',
'text': self.en_text
}, {
'model': 'damo/speech_sambert-hifigan_tts_luna_en-gb_16k',
'text': self.en_text
}, {
'model': 'damo/speech_sambert-hifigan_tts_andy_en-us_16k',
'text': self.en_text
}, {
'model': 'damo/speech_sambert-hifigan_tts_annie_en-us_16k',
'text': self.en_text
}, {
'model': 'damo/speech_sambert-hifigan_tts_en-gb_16k',
'text': self.en_text
}, {
'model': 'damo/speech_sambert-hifigan_tts_en-us_16k',
'text': self.en_text
}]
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
def test_pipeline(self):
for i in range(len(self.test_models)):
logger.info('test %s' % self.test_model_name[i])
sambert_hifigan_tts = pipeline(
task=self.task, model=self.test_models[i]['model'])
self.assertTrue(sambert_hifigan_tts is not None)
output = sambert_hifigan_tts(input=self.test_models[i]['text'])
self.assertIsNotNone(output[OutputKeys.OUTPUT_WAV])
wav = output[OutputKeys.OUTPUT_WAV]
with open(f'output_{self.test_model_name[i]}', 'wb') as f:
f.write(wav)
if __name__ == '__main__':
unittest.main()