mirror of
https://github.com/modelscope/modelscope.git
synced 2025-12-16 08:17:45 +01:00
165 lines
5.8 KiB
Python
165 lines
5.8 KiB
Python
# Copyright 2022-2023 The Alibaba Fundamental Vision Team Authors. All rights reserved.
|
|
import os
|
|
import shutil
|
|
import tempfile
|
|
import unittest
|
|
|
|
from modelscope.metainfo import Trainers
|
|
from modelscope.msdatasets import MsDataset
|
|
from modelscope.trainers import build_trainer
|
|
from modelscope.utils.import_utils import is_swift_available
|
|
from modelscope.utils.test_utils import test_level
|
|
|
|
|
|
class TestVisionEfficientTuningSwiftTrainer(unittest.TestCase):
|
|
|
|
def setUp(self):
|
|
print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
|
|
|
|
self.train_dataset = MsDataset.load(
|
|
'foundation_model_evaluation_benchmark',
|
|
namespace='damo',
|
|
subset_name='OxfordFlowers',
|
|
split='train')
|
|
|
|
self.eval_dataset = MsDataset.load(
|
|
'foundation_model_evaluation_benchmark',
|
|
namespace='damo',
|
|
subset_name='OxfordFlowers',
|
|
split='eval')
|
|
|
|
self.max_epochs = 1
|
|
self.num_classes = 102
|
|
self.tune_length = 10
|
|
|
|
self.tmp_dir = tempfile.TemporaryDirectory().name
|
|
if not os.path.exists(self.tmp_dir):
|
|
os.makedirs(self.tmp_dir)
|
|
|
|
def tearDown(self):
|
|
shutil.rmtree(self.tmp_dir)
|
|
super().tearDown()
|
|
|
|
@unittest.skipUnless(test_level() >= 0 and is_swift_available(),
|
|
'skip test in current test level')
|
|
def test_vision_efficient_tuning_swift_lora_train(self):
|
|
from swift import LoRAConfig
|
|
model_id = 'damo/cv_vitb16_classification_vision-efficient-tuning-lora'
|
|
|
|
def cfg_modify_fn(cfg):
|
|
cfg.model.head.num_classes = self.num_classes
|
|
cfg.model.finetune = True
|
|
cfg.train.max_epochs = self.max_epochs
|
|
cfg.train.lr_scheduler.T_max = self.max_epochs
|
|
cfg.model.backbone.lora_length = 0
|
|
return cfg
|
|
|
|
lora_config = LoRAConfig(
|
|
r=self.tune_length,
|
|
target_modules=['qkv'],
|
|
merge_weights=False,
|
|
use_merged_linear=True,
|
|
enable_lora=[True])
|
|
|
|
kwargs = dict(
|
|
model=model_id,
|
|
work_dir=self.tmp_dir,
|
|
train_dataset=self.train_dataset,
|
|
eval_dataset=self.eval_dataset,
|
|
cfg_modify_fn=cfg_modify_fn,
|
|
efficient_tuners=lora_config)
|
|
|
|
trainer = build_trainer(
|
|
name=Trainers.vision_efficient_tuning, default_args=kwargs)
|
|
trainer.train()
|
|
result = trainer.evaluate()
|
|
print(f'Vision-efficient-tuning-lora train output: {result}.')
|
|
|
|
results_files = os.listdir(self.tmp_dir)
|
|
self.assertIn(f'{trainer.timestamp}.log.json', results_files)
|
|
for i in range(self.max_epochs):
|
|
self.assertIn(f'epoch_{i+1}.pth', results_files)
|
|
|
|
@unittest.skipUnless(test_level() >= 0 and is_swift_available(),
|
|
'skip test in current test level')
|
|
def test_vision_efficient_tuning_swift_adapter_train(self):
|
|
from swift import AdapterConfig
|
|
model_id = 'damo/cv_vitb16_classification_vision-efficient-tuning-adapter'
|
|
|
|
def cfg_modify_fn(cfg):
|
|
cfg.model.head.num_classes = self.num_classes
|
|
cfg.model.finetune = True
|
|
cfg.train.max_epochs = self.max_epochs
|
|
cfg.train.lr_scheduler.T_max = self.max_epochs
|
|
cfg.model.backbone.adapter_length = 0
|
|
return cfg
|
|
|
|
adapter_config = AdapterConfig(
|
|
dim=768,
|
|
hidden_pos=0,
|
|
target_modules=r'.*blocks\.\d+\.mlp$',
|
|
adapter_length=self.tune_length)
|
|
|
|
kwargs = dict(
|
|
model=model_id,
|
|
work_dir=self.tmp_dir,
|
|
train_dataset=self.train_dataset,
|
|
eval_dataset=self.eval_dataset,
|
|
cfg_modify_fn=cfg_modify_fn,
|
|
efficient_tuners=adapter_config)
|
|
|
|
trainer = build_trainer(
|
|
name=Trainers.vision_efficient_tuning, default_args=kwargs)
|
|
trainer.train()
|
|
result = trainer.evaluate()
|
|
print(f'Vision-efficient-tuning-adapter train output: {result}.')
|
|
|
|
results_files = os.listdir(self.tmp_dir)
|
|
self.assertIn(f'{trainer.timestamp}.log.json', results_files)
|
|
for i in range(self.max_epochs):
|
|
self.assertIn(f'epoch_{i+1}.pth', results_files)
|
|
|
|
@unittest.skipUnless(test_level() >= 0 and is_swift_available(),
|
|
'skip test in current test level')
|
|
def test_vision_efficient_tuning_swift_prompt_train(self):
|
|
from swift import PromptConfig
|
|
model_id = 'damo/cv_vitb16_classification_vision-efficient-tuning-prompt'
|
|
|
|
def cfg_modify_fn(cfg):
|
|
cfg.model.head.num_classes = self.num_classes
|
|
cfg.model.finetune = True
|
|
cfg.train.max_epochs = self.max_epochs
|
|
cfg.train.lr_scheduler.T_max = self.max_epochs
|
|
cfg.model.backbone.prompt_length = 0
|
|
return cfg
|
|
|
|
prompt_config = PromptConfig(
|
|
dim=768,
|
|
target_modules=r'.*blocks\.\d+$',
|
|
embedding_pos=0,
|
|
prompt_length=self.tune_length,
|
|
attach_front=False)
|
|
|
|
kwargs = dict(
|
|
model=model_id,
|
|
work_dir=self.tmp_dir,
|
|
train_dataset=self.train_dataset,
|
|
eval_dataset=self.eval_dataset,
|
|
cfg_modify_fn=cfg_modify_fn,
|
|
efficient_tuners=prompt_config)
|
|
|
|
trainer = build_trainer(
|
|
name=Trainers.vision_efficient_tuning, default_args=kwargs)
|
|
trainer.train()
|
|
result = trainer.evaluate()
|
|
print(f'Vision-efficient-tuning-prompt train output: {result}.')
|
|
|
|
results_files = os.listdir(self.tmp_dir)
|
|
self.assertIn(f'{trainer.timestamp}.log.json', results_files)
|
|
for i in range(self.max_epochs):
|
|
self.assertIn(f'epoch_{i+1}.pth', results_files)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|