Files
modelscope/tests/trainers/test_finetune_vision_efficient_tuning_swift.py
2023-08-29 17:27:18 +08:00

165 lines
5.8 KiB
Python

# Copyright 2022-2023 The Alibaba Fundamental Vision Team Authors. All rights reserved.
import os
import shutil
import tempfile
import unittest
from modelscope.metainfo import Trainers
from modelscope.msdatasets import MsDataset
from modelscope.trainers import build_trainer
from modelscope.utils.import_utils import is_swift_available
from modelscope.utils.test_utils import test_level
class TestVisionEfficientTuningSwiftTrainer(unittest.TestCase):
def setUp(self):
print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
self.train_dataset = MsDataset.load(
'foundation_model_evaluation_benchmark',
namespace='damo',
subset_name='OxfordFlowers',
split='train')
self.eval_dataset = MsDataset.load(
'foundation_model_evaluation_benchmark',
namespace='damo',
subset_name='OxfordFlowers',
split='eval')
self.max_epochs = 1
self.num_classes = 102
self.tune_length = 10
self.tmp_dir = tempfile.TemporaryDirectory().name
if not os.path.exists(self.tmp_dir):
os.makedirs(self.tmp_dir)
def tearDown(self):
shutil.rmtree(self.tmp_dir)
super().tearDown()
@unittest.skipUnless(test_level() >= 0 and is_swift_available(),
'skip test in current test level')
def test_vision_efficient_tuning_swift_lora_train(self):
from swift import LoRAConfig
model_id = 'damo/cv_vitb16_classification_vision-efficient-tuning-lora'
def cfg_modify_fn(cfg):
cfg.model.head.num_classes = self.num_classes
cfg.model.finetune = True
cfg.train.max_epochs = self.max_epochs
cfg.train.lr_scheduler.T_max = self.max_epochs
cfg.model.backbone.lora_length = 0
return cfg
lora_config = LoRAConfig(
r=self.tune_length,
target_modules=['qkv'],
merge_weights=False,
use_merged_linear=True,
enable_lora=[True])
kwargs = dict(
model=model_id,
work_dir=self.tmp_dir,
train_dataset=self.train_dataset,
eval_dataset=self.eval_dataset,
cfg_modify_fn=cfg_modify_fn,
efficient_tuners=lora_config)
trainer = build_trainer(
name=Trainers.vision_efficient_tuning, default_args=kwargs)
trainer.train()
result = trainer.evaluate()
print(f'Vision-efficient-tuning-lora train output: {result}.')
results_files = os.listdir(self.tmp_dir)
self.assertIn(f'{trainer.timestamp}.log.json', results_files)
for i in range(self.max_epochs):
self.assertIn(f'epoch_{i+1}.pth', results_files)
@unittest.skipUnless(test_level() >= 0 and is_swift_available(),
'skip test in current test level')
def test_vision_efficient_tuning_swift_adapter_train(self):
from swift import AdapterConfig
model_id = 'damo/cv_vitb16_classification_vision-efficient-tuning-adapter'
def cfg_modify_fn(cfg):
cfg.model.head.num_classes = self.num_classes
cfg.model.finetune = True
cfg.train.max_epochs = self.max_epochs
cfg.train.lr_scheduler.T_max = self.max_epochs
cfg.model.backbone.adapter_length = 0
return cfg
adapter_config = AdapterConfig(
dim=768,
hidden_pos=0,
target_modules=r'.*blocks\.\d+\.mlp$',
adapter_length=self.tune_length)
kwargs = dict(
model=model_id,
work_dir=self.tmp_dir,
train_dataset=self.train_dataset,
eval_dataset=self.eval_dataset,
cfg_modify_fn=cfg_modify_fn,
efficient_tuners=adapter_config)
trainer = build_trainer(
name=Trainers.vision_efficient_tuning, default_args=kwargs)
trainer.train()
result = trainer.evaluate()
print(f'Vision-efficient-tuning-adapter train output: {result}.')
results_files = os.listdir(self.tmp_dir)
self.assertIn(f'{trainer.timestamp}.log.json', results_files)
for i in range(self.max_epochs):
self.assertIn(f'epoch_{i+1}.pth', results_files)
@unittest.skipUnless(test_level() >= 0 and is_swift_available(),
'skip test in current test level')
def test_vision_efficient_tuning_swift_prompt_train(self):
from swift import PromptConfig
model_id = 'damo/cv_vitb16_classification_vision-efficient-tuning-prompt'
def cfg_modify_fn(cfg):
cfg.model.head.num_classes = self.num_classes
cfg.model.finetune = True
cfg.train.max_epochs = self.max_epochs
cfg.train.lr_scheduler.T_max = self.max_epochs
cfg.model.backbone.prompt_length = 0
return cfg
prompt_config = PromptConfig(
dim=768,
target_modules=r'.*blocks\.\d+$',
embedding_pos=0,
prompt_length=self.tune_length,
attach_front=False)
kwargs = dict(
model=model_id,
work_dir=self.tmp_dir,
train_dataset=self.train_dataset,
eval_dataset=self.eval_dataset,
cfg_modify_fn=cfg_modify_fn,
efficient_tuners=prompt_config)
trainer = build_trainer(
name=Trainers.vision_efficient_tuning, default_args=kwargs)
trainer.train()
result = trainer.evaluate()
print(f'Vision-efficient-tuning-prompt train output: {result}.')
results_files = os.listdir(self.tmp_dir)
self.assertIn(f'{trainer.timestamp}.log.json', results_files)
for i in range(self.max_epochs):
self.assertIn(f'epoch_{i+1}.pth', results_files)
if __name__ == '__main__':
unittest.main()