mirror of
https://github.com/modelscope/modelscope.git
synced 2025-12-17 00:37:43 +01:00
233 lines
8.3 KiB
Python
233 lines
8.3 KiB
Python
import os
|
|
from types import MethodType
|
|
from typing import Any, Dict, NamedTuple, Optional
|
|
|
|
import torch
|
|
from swift import get_logger
|
|
from torch import dtype as Dtype
|
|
|
|
from modelscope import (AutoConfig, AutoModelForCausalLM, AutoTokenizer, Model,
|
|
read_config, snapshot_download)
|
|
from modelscope.models.nlp.chatglm2 import ChatGLM2Config, ChatGLM2Tokenizer
|
|
from modelscope.models.nlp.llama2 import Llama2Config, Llama2Tokenizer
|
|
|
|
logger = get_logger()
|
|
|
|
|
|
def _add_special_token(tokenizer, special_token_mapper: Dict[str,
|
|
Any]) -> None:
|
|
for k, v in special_token_mapper.items():
|
|
setattr(tokenizer, k, v)
|
|
assert tokenizer.eos_token is not None
|
|
if tokenizer.pad_token is None:
|
|
tokenizer.pad_token = tokenizer.eos_token
|
|
|
|
|
|
def get_model_tokenizer_from_repo(model_dir: str,
|
|
torch_dtype: Dtype,
|
|
load_model: bool = True,
|
|
model_config=None,
|
|
**model_kwargs):
|
|
"""load from an independent repository"""
|
|
if model_config is None:
|
|
model_config = AutoConfig.from_pretrained(
|
|
model_dir, trust_remote_code=True)
|
|
model_config.torch_dtype = torch_dtype
|
|
logger.info(f'model_config: {model_config}')
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
model_dir, trust_remote_code=True)
|
|
model = None
|
|
if load_model:
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
model_dir,
|
|
config=model_config,
|
|
torch_dtype=torch_dtype,
|
|
trust_remote_code=True,
|
|
**model_kwargs)
|
|
return model, tokenizer
|
|
|
|
|
|
def get_model_tokenizer_from_sdk(config_class: type,
|
|
tokenizer_class: type,
|
|
model_dir: str,
|
|
torch_dtype: Dtype,
|
|
load_model: bool = True,
|
|
model_config=None,
|
|
**model_kwargs):
|
|
"""load from ms library"""
|
|
config = read_config(model_dir)
|
|
logger.info(config)
|
|
if model_config is None:
|
|
model_config = config_class.from_pretrained(model_dir)
|
|
model_config.torch_dtype = torch_dtype
|
|
logger.info(model_config)
|
|
tokenizer = tokenizer_class.from_pretrained(model_dir)
|
|
model = None
|
|
if load_model:
|
|
model = Model.from_pretrained(
|
|
model_dir,
|
|
cfg_dict=config,
|
|
config=model_config,
|
|
torch_dtype=torch_dtype,
|
|
**model_kwargs)
|
|
return model, tokenizer
|
|
|
|
|
|
def get_model_tokenizer_baichuan13b(model_dir: str,
|
|
torch_dtype: Dtype,
|
|
load_model: bool = True,
|
|
**model_kwargs):
|
|
# baichuan-13b does not implement the `get_input_embeddings` function
|
|
model, tokenizer = get_model_tokenizer_from_repo(model_dir, torch_dtype,
|
|
load_model,
|
|
**model_kwargs)
|
|
model.get_input_embeddings = MethodType(
|
|
lambda self: self.model.embed_tokens, model)
|
|
return model, tokenizer
|
|
|
|
|
|
def get_model_tokenizer_chatglm2(model_dir: str,
|
|
torch_dtype: Dtype,
|
|
load_model: bool = True,
|
|
**model_kwargs):
|
|
if 'quantization_config' in model_kwargs:
|
|
model_kwargs['quantization_config'].llm_int8_skip_modules = [
|
|
'output_layer'
|
|
]
|
|
return get_model_tokenizer_from_sdk(ChatGLM2Config, ChatGLM2Tokenizer,
|
|
model_dir, torch_dtype, load_model,
|
|
**model_kwargs)
|
|
|
|
|
|
def get_model_tokenizer_llama2(model_dir: str,
|
|
torch_dtype: Dtype,
|
|
load_model: bool = True,
|
|
**model_kwargs):
|
|
model_config = AutoConfig.from_pretrained(
|
|
model_dir, trust_remote_code=True)
|
|
model_config.pretraining_tp = 1
|
|
return get_model_tokenizer_from_sdk(Llama2Config, Llama2Tokenizer,
|
|
model_dir, torch_dtype, load_model,
|
|
model_config, **model_kwargs)
|
|
|
|
|
|
def get_model_tokenizer_qwen(model_dir: str,
|
|
torch_dtype: Dtype,
|
|
load_model: bool = True,
|
|
**kwargs):
|
|
model_config = AutoConfig.from_pretrained(
|
|
model_dir, trust_remote_code=True)
|
|
mapper = {
|
|
torch.float16: 'fp16',
|
|
torch.bfloat16: 'bf16',
|
|
torch.float32: 'fp32'
|
|
}
|
|
k_true = mapper[torch_dtype]
|
|
for k in mapper.values():
|
|
v = False
|
|
if k == k_true:
|
|
v = True
|
|
setattr(model_config, k, v)
|
|
|
|
use_flash_attn = kwargs.pop('use_flash_attn', 'auto')
|
|
model_config.use_flash_attn = use_flash_attn
|
|
return get_model_tokenizer_from_repo(model_dir, torch_dtype, load_model,
|
|
model_config, **kwargs)
|
|
|
|
|
|
class LoRATM(NamedTuple):
|
|
# default lora target modules
|
|
baichuan = ['W_pack']
|
|
chatglm2 = ['query_key_value']
|
|
llama2 = ['q_proj', 'k_proj', 'v_proj']
|
|
qwen = ['c_attn']
|
|
polylm = ['c_attn']
|
|
|
|
|
|
# Reference: 'https://modelscope.cn/models/{model_id}/summary'
|
|
# keys: 'model_id', 'revision', 'get_function',
|
|
# 'ignore_file_pattern', 'special_token_mapper', 'lora_TM'
|
|
MODEL_MAPPING = {
|
|
'baichuan-7b': {
|
|
'model_id': 'baichuan-inc/baichuan-7B', # model id or model dir
|
|
'revision': 'v1.0.7',
|
|
'lora_TM': LoRATM.baichuan
|
|
},
|
|
'baichuan-13b': {
|
|
'model_id': 'baichuan-inc/Baichuan-13B-Base',
|
|
'revision': 'v1.0.3',
|
|
'get_function': get_model_tokenizer_baichuan13b,
|
|
'lora_TM': LoRATM.baichuan
|
|
},
|
|
'chatglm2-6b': {
|
|
'model_id': 'ZhipuAI/chatglm2-6b',
|
|
'revision': 'v1.0.7',
|
|
'get_function': get_model_tokenizer_chatglm2,
|
|
'lora_TM': LoRATM.chatglm2
|
|
},
|
|
'llama2-7b': {
|
|
'model_id': 'modelscope/Llama-2-7b-ms',
|
|
'revision': 'v1.0.2',
|
|
'get_function': get_model_tokenizer_llama2,
|
|
'ignore_file_pattern': [r'.+\.bin$'], # use safetensors
|
|
'lora_TM': LoRATM.llama2
|
|
},
|
|
'llama2-13b': {
|
|
'model_id': 'modelscope/Llama-2-13b-ms',
|
|
'revision': 'v1.0.2',
|
|
'get_function': get_model_tokenizer_llama2,
|
|
'ignore_file_pattern': [r'.+\.bin$'],
|
|
'lora_TM': LoRATM.llama2
|
|
},
|
|
'llama2-70b': {
|
|
'model_id': 'modelscope/Llama-2-70b-ms',
|
|
'revision': 'v1.0.0',
|
|
'get_function': get_model_tokenizer_llama2,
|
|
'ignore_file_pattern': [r'.+\.bin$'],
|
|
'lora_TM': LoRATM.llama2
|
|
},
|
|
'openbuddy-llama2-13b': {
|
|
'model_id': 'OpenBuddy/openbuddy-llama2-13b-v8.1-fp16',
|
|
'revision': 'v1.0.0',
|
|
'lora_TM': LoRATM.llama2,
|
|
},
|
|
'qwen-7b': {
|
|
'model_id': 'qwen/Qwen-7B',
|
|
'revision': 'v.1.0.4',
|
|
'get_function': get_model_tokenizer_qwen,
|
|
'lora_TM': LoRATM.qwen,
|
|
'special_token_mapper': {
|
|
'eos_token': '<|endoftext|>'
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
def get_model_tokenizer(model_type: str,
|
|
torch_dtype: Optional[Dtype] = None,
|
|
load_model: bool = True,
|
|
**kwargs):
|
|
data = MODEL_MAPPING.get(model_type)
|
|
if data is None:
|
|
raise ValueError(f'model_type: {model_type}')
|
|
|
|
model_id = data['model_id']
|
|
get_function = data.get('get_function', get_model_tokenizer_from_repo)
|
|
ignore_file_pattern = data.get('ignore_file_pattern', [])
|
|
special_token_mapper = data.get('special_token_mapper', {})
|
|
if torch_dtype is None:
|
|
torch_dtype = data.get('torch_dtype', torch.float16)
|
|
|
|
model_dir = kwargs.pop('model_dir', None)
|
|
if model_dir is None:
|
|
model_dir = model_id
|
|
if not os.path.exists(model_id):
|
|
revision = data.get('revision', 'master')
|
|
model_dir = snapshot_download(
|
|
model_id, revision, ignore_file_pattern=ignore_file_pattern)
|
|
|
|
model, tokenizer = get_function(model_dir, torch_dtype, load_model,
|
|
**kwargs)
|
|
_add_special_token(tokenizer, special_token_mapper)
|
|
return model, tokenizer, model_dir
|