Files
modelscope/examples/pytorch/llm/_common.py
xingjun.wang 96a5282021 check format
2023-07-21 23:09:24 +08:00

467 lines
15 KiB
Python

import ast
import datetime as dt
import math
import os
import random
import re
import sys
from dataclasses import dataclass, field
from functools import partial
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import json
import matplotlib.pyplot as plt
import numpy as np
#
import torch
import torch.nn as nn
import torch.optim as optim
from datasets import Dataset as HfDataset
from datasets import concatenate_datasets
from matplotlib.axes import Axes
from matplotlib.figure import Figure
from numpy import ndarray
from tensorboard.backend.event_processing.event_accumulator import \
EventAccumulator
from torch import Tensor
from torch import device as Device
from torch import dtype as Dtype
from torch.nn import Module
from torch.nn.parameter import Parameter
from torch.nn.utils.rnn import pad_sequence
from torch.optim import Optimizer
from torch.optim import lr_scheduler as lrs
from torch.optim.lr_scheduler import _LRScheduler as LRScheduler
from torch.utils.data import Dataset
#
from torchmetrics import Accuracy, MeanMetric
#
from tqdm import tqdm
from transformers import (AutoConfig, AutoModelForCausalLM, AutoTokenizer,
GenerationConfig, HfArgumentParser, TextStreamer)
#
from modelscope import (Model, MsDataset, get_logger, read_config,
snapshot_download)
from modelscope.metrics.base import Metric
from modelscope.metrics.builder import METRICS
from modelscope.models.nlp.chatglm2 import ChatGLM2Tokenizer
from modelscope.msdatasets.dataset_cls.custom_datasets import \
TorchCustomDataset
from modelscope.swift import LoRAConfig, Swift
from modelscope.trainers import EpochBasedTrainer
from modelscope.utils.config import Config, ConfigDict
from modelscope.utils.registry import default_group
#
COLOR, COLOR_S = '#FFE2D9', '#FF7043'
PROMPT = """Human: {instruction}
AI: """
logger = get_logger()
os.environ['TOKENIZERS_PARALLELISM'] = 'true'
#
def _get_version(work_dir: str) -> int:
if os.path.isdir(work_dir):
fnames = os.listdir(work_dir)
else:
fnames = []
v_list = [-1]
for fname in fnames:
m = re.match(r'v(\d+)', fname)
if m is None:
continue
v = m.group(1)
v_list.append(int(v))
return max(v_list) + 1
def get_work_dir(work_dir: str) -> str:
"""add version"""
work_dir = os.path.abspath(work_dir)
version = _get_version(work_dir)
time = dt.datetime.now().strftime('%Y%m%d-%H%M%S')
#
work_dir = os.path.join(work_dir, f'v{version}-{time}')
logger.info(f'work_dir: {work_dir}')
return work_dir
def _format_device(device: Union[List[int], str]) -> Tuple[List[int], str]:
if isinstance(device, list):
device_ids = device
device_str = ','.join([str(d) for d in device])
else:
device_ids = [int(d) for d in device.split(',') if d != '-1']
device_str = device
device_str = device_str.replace(' ', '')
return device_ids, device_str
def select_device(device: Union[List[int], str]) -> Device:
"""Call this function before cuda is initialized.
device: e.g. []: 'cpu', [0], [0, 1, 2]
e.g. '-1': 'cpu', '0', '0,1,2'
"""
if torch.cuda.is_initialized():
logger.warning('CUDA has been initialized! Device selection fails!')
return torch.device('cuda:0')
#
device_ids, device_str = _format_device(device)
#
os.environ['CUDA_VISIBLE_DEVICES'] = device_str
log_s = 'Using device: '
if len(device_ids) == 0:
master_device: str = 'cpu'
log_s += 'cpu'
else:
assert torch.cuda.is_available(
) and torch.cuda.device_count() >= len(device_ids)
master_device = 'cuda:0'
log_s += f'cuda:{device_str}'
logger.info(log_s)
return torch.device(master_device)
def seed_everything(seed: Optional[int] = None, gpu_dtm: bool = False) -> int:
if seed is None:
seed_max = np.iinfo(np.int32).max
seed = random.randint(0, seed_max)
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
logger.info(f'Global seed set to {seed}')
if gpu_dtm:
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
logger.info(f'Setting deterministic: {True}, benchmark: {False}')
return seed
def get_T_max(dataset_len: int, batch_size: int, max_epochs: int,
drop_last: bool) -> int:
"""Calculate T_max in CosineAnnealingLR"""
if drop_last:
T_max = dataset_len // batch_size
else:
T_max = math.ceil(dataset_len / batch_size)
T_max *= max_epochs
return T_max
def tokenize_function(example: Dict[str, Optional[str]],
tokenizer,
max_length: Optional[int] = 2048) -> Dict[str, Any]:
"""Only applicable to baichuan and chatglm2. Other models need to be tested"""
instruction: str = example['instruction']
input_ = example['input']
if input_ is not None and input_ != '':
# instruction = instruction + '\n'
if input_.startswith('输入:'):
instruction = instruction + input_[3:]
else:
instruction = instruction + input_
output = example['output']
src_text = PROMPT.format(instruction=instruction)
src_input_ids: List[int] = tokenizer(
src_text, return_attention_mask=False,
add_special_tokens=True)['input_ids']
#
tgt_input_ids = []
if output is not None:
tgt_input_ids += tokenizer(
output, return_attention_mask=False,
add_special_tokens=False)['input_ids']
tgt_input_ids += [tokenizer.eos_token_id]
labels = [-100] * len(src_input_ids) + tgt_input_ids
else:
labels = None
input_ids = src_input_ids + tgt_input_ids
#
if max_length is not None:
input_ids = input_ids[-max_length:]
if labels is not None:
labels = labels[-max_length:]
#
return {'input_ids': input_ids, 'labels': labels}
def stat_dataset(dataset: HfDataset) -> None:
"""Statistical analysis was performed on the data set"""
_token_len = []
for d in dataset:
_token_len.append(len(d['input_ids']))
_token_len = np.array(_token_len)
mean = _token_len.mean().item()
std = _token_len.std().item()
min_ = _token_len.min().item()
max_ = _token_len.max().item()
logger.info(
f'Dataset Token Length: {mean:.6f}±{std:.6f}, min={min_:.6f}, max={max_:.6f}, size={_token_len.shape[0]}'
)
def print_example(example: Dict[str, Any], tokenizer) -> None:
input_ids, labels = example['input_ids'], example['labels']
print(f'[INPUT_IDS] {input_ids}')
print(f'[INPUT] {tokenizer.decode(input_ids)}')
print()
print(f'[LABLES_IDS] {labels}')
print(
f'[LABLES] {tokenizer.decode([lb if lb != -100 else 0 for lb in labels])}'
)
def data_collate_fn(batch: List[Dict[str, Any]], tokenizer) -> Dict[str, Any]:
input_ids = [torch.tensor(b['input_ids']) for b in batch]
labels = [torch.tensor(b['labels']) for b in batch]
attention_mask = [
torch.ones(len(input_ids[i]), dtype=torch.int64)
for i in range(len(input_ids))
]
#
input_ids = pad_sequence(
input_ids, batch_first=True, padding_value=tokenizer.pad_token_id)
attention_mask = pad_sequence(
attention_mask, batch_first=True, padding_value=0)
labels = pad_sequence(labels, batch_first=True, padding_value=-100)
return {
'input_ids': input_ids,
'attention_mask': attention_mask,
'labels': labels
}
def print_model_info(model: Module, name: Optional[str] = None) -> None:
if name is None:
name = model.__class__.__name__
#
n_params = sum(p.numel() for p in model.parameters())
n_grads = sum(p.numel() for p in model.parameters() if p.requires_grad)
n_buffers = sum(p.numel() for p in model.buffers())
#
n_params /= 1e6
n_grads /= 1e6
n_buffers /= 1e6
s = [
f'{name}: ',
f'{n_params:.4f}M Params ({n_grads:.4f}M Trainable), ',
f'{n_buffers:.4f}M Buffers',
]
s += '.'
logger.info(''.join(s))
def show_freeze_layers(model: Module, max_lines: int = 20) -> None:
named_p = list(model.named_parameters())
for i, (n, p) in enumerate(named_p):
if i >= max_lines:
logger.info('...')
break
logger.info(f'{n}: requires_grad={p.requires_grad}')
@METRICS.register_module(group_key=default_group, module_name='my_metric')
class MyMetric(Metric):
def __init__(self, vocab_size: int):
self.acc = Accuracy('multiclass', num_classes=vocab_size)
self.loss = MeanMetric()
def add(self, outputs: Dict[str, Any], inputs: Dict[str, Any]) -> None:
loss: Tensor = outputs.loss
self.loss.update(loss)
#
labels: Tensor = inputs['labels']
labels = labels[:, 1:]
labels_mask = labels != -100
logits: Tensor = outputs.logits[:, :-1]
logits = logits[labels_mask].contiguous().view(-1, logits.shape[-1])
pred = logits.argmax(dim=-1)
labels = labels[labels_mask].to(logits.device)
self.acc.update(pred, labels)
def evaluate(self):
return {
'acc': self.acc.compute().item(),
'loss': self.loss.compute().item()
}
def merge(self, other: 'MyMetric') -> None:
"""This script does not support ddp. TODO"""
raise NotImplementedError
def _add_special_token(tokenizer):
if tokenizer.eos_token_id is None:
tokenizer.eos_token_id = 2
if tokenizer.bos_token_id is None:
tokenizer.bos_token_id = 1
if tokenizer.pad_token_id is None:
tokenizer.pad_token_id = 0
logger.info(f'bos_token_id: {tokenizer.bos_token_id}, '
f'eos_token_id: {tokenizer.eos_token_id}, '
f'pad_token_id: {tokenizer.pad_token_id}')
def get_baichuan_model_tokenizer(model_dir: str,
load_model: bool = True,
add_special_token: bool = True):
sys.path.insert(0, model_dir)
model_config = AutoConfig.from_pretrained(
model_dir, trust_remote_code=True)
model_config.torch_dtype = torch.float16
logger.info(f'model_config: {model_config}')
tokenizer = AutoTokenizer.from_pretrained(
model_dir, trust_remote_code=True)
model = None
if load_model:
model = AutoModelForCausalLM.from_pretrained(
model_dir,
config=model_config,
device_map='auto',
torch_dtype=torch.float16,
trust_remote_code=True)
#
if add_special_token:
_add_special_token(tokenizer)
return model, tokenizer
def get_chatglm2_model_tokenizer(model_dir: str,
load_model: bool = True,
add_special_token: bool = True):
config = read_config(model_dir)
config['model'] = ConfigDict({'type': 'chatglm2-6b'})
tokenizer = ChatGLM2Tokenizer.from_pretrained(model_dir)
model = None
if load_model:
model = Model.from_pretrained(
model_dir,
cfg_dict=config,
device_map='auto',
torch_dtype=torch.float16)
if add_special_token:
_add_special_token(tokenizer)
return model, tokenizer
def get_llama2_model_tokenizer(model_dir: str,
load_model: bool = True,
add_special_token: bool = True):
config = AutoConfig.from_pretrained(model_dir)
tokenizer = AutoTokenizer.from_pretrained(model_dir)
model = None
if load_model:
model = AutoModelForCausalLM.from_pretrained(
model_dir,
config=config,
device_map='auto',
torch_dtype=torch.float16,
)
if add_special_token:
_add_special_token(tokenizer)
return model, tokenizer
def get_alpaca_en_zh_dataset(
tokenize_function,
only_val: bool = False,
test_split_p: float = 0.01,
split_seed: int = 42,
data_sample: Optional[int] = None) -> Tuple[HfDataset, HfDataset]:
"""
split: Literal['train', 'validation', None]
"""
dataset_en: HfDataset = MsDataset.load(
'AI-ModelScope/alpaca-gpt4-data-en', split='train').to_hf_dataset()
dataset_zh: HfDataset = MsDataset.load(
'AI-ModelScope/alpaca-gpt4-data-zh', split='train').to_hf_dataset()
dataset_en = dataset_en.remove_columns(['text'])
dataset: HfDataset = concatenate_datasets([dataset_zh, dataset_en])
#
if data_sample is not None:
dataset = dataset.select(range(data_sample))
dataset = dataset.train_test_split(test_split_p, seed=split_seed)
if only_val:
dataset = dataset['test']
if tokenize_function is not None:
dataset = dataset.map(tokenize_function)
dataset = dataset.remove_columns(['instruction', 'input', 'output'])
#
if only_val:
return None, dataset
else:
return dataset['train'], dataset['test']
Item = Dict[str, float]
def read_tensorboard_file(fpath: str) -> Dict[str, List[Item]]:
if not os.path.isfile(fpath):
raise FileNotFoundError(f'fpath: {fpath}')
ea = EventAccumulator(fpath)
ea.Reload()
res = {}
tags = ea.Tags()['scalars']
for tag in tags:
values = ea.Scalars(tag)
r = []
for v in values:
r.append({'step': v.step, 'value': v.value})
res[tag] = r
return res
def tensorboard_smoothing(values: List[float],
smooth: float = 0.9) -> List[float]:
norm_factor = 1
x = 0
res = []
for i in range(len(values)):
x = x * smooth + values[i] # Exponential decay
res.append(x / norm_factor)
#
norm_factor *= smooth
norm_factor += 1
return res
def plot_image(tb_dir: str,
smooth_key: List[str],
smooth_val: float = 0.9,
figsize: Tuple[int, int] = (8, 5),
dpi: int = 100) -> None:
image_dir = os.path.join(os.path.dirname(tb_dir), 'images')
os.makedirs(image_dir, exist_ok=True)
#
fname = os.listdir(tb_dir)[0]
tb_path = os.path.join(tb_dir, fname)
data = read_tensorboard_file(tb_path)
for k in data.keys():
_data = data[k]
steps = [d['step'] for d in _data]
values = [d['value'] for d in _data]
if len(values) == 0:
continue
_, ax = plt.subplots(1, 1, squeeze=True, figsize=figsize, dpi=dpi)
ax.set_title(k)
if len(values) == 1:
ax.scatter(steps, values, color=COLOR_S)
elif k in smooth_key:
ax.plot(steps, values, color=COLOR)
values_s = tensorboard_smoothing(values, smooth_val)
ax.plot(steps, values_s, color=COLOR_S)
else:
ax.plot(steps, values, color=COLOR_S)
fpath = os.path.join(image_dir, k.replace('/', '_'))
plt.savefig(fpath, dpi=dpi, bbox_inches='tight')