mirror of
https://github.com/modelscope/modelscope.git
synced 2025-12-16 16:27:45 +01:00
* using get_model to validate hub path * support reading pipeline info from configuration file * add metainfo const * update model type and pipeline type and fix UT * relax requimrent for protobuf * skip two dataset tests due to temporal failure Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/9118154
116 lines
4.4 KiB
Python
116 lines
4.4 KiB
Python
import unittest
|
|
|
|
import datasets as hfdata
|
|
|
|
from modelscope.models import Model
|
|
from modelscope.preprocessors import SequenceClassificationPreprocessor
|
|
from modelscope.preprocessors.base import Preprocessor
|
|
from modelscope.pydatasets import PyDataset
|
|
from modelscope.utils.constant import Hubs
|
|
from modelscope.utils.test_utils import require_tf, require_torch, test_level
|
|
|
|
|
|
class ImgPreprocessor(Preprocessor):
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
self.path_field = kwargs.pop('image_path', 'image_path')
|
|
self.width = kwargs.pop('width', 'width')
|
|
self.height = kwargs.pop('height', 'width')
|
|
|
|
def __call__(self, data):
|
|
import cv2
|
|
image_path = data.get(self.path_field)
|
|
if not image_path:
|
|
return None
|
|
img = cv2.imread(image_path)
|
|
return {
|
|
'image':
|
|
cv2.resize(img,
|
|
(data.get(self.height, 128), data.get(self.width, 128)))
|
|
}
|
|
|
|
|
|
class PyDatasetTest(unittest.TestCase):
|
|
|
|
@unittest.skipUnless(test_level() >= 2,
|
|
'skip test due to dataset api problem')
|
|
def test_ds_basic(self):
|
|
ms_ds_full = PyDataset.load('squad')
|
|
ms_ds_full_hf = hfdata.load_dataset('squad')
|
|
ms_ds_train = PyDataset.load('squad', split='train')
|
|
ms_ds_train_hf = hfdata.load_dataset('squad', split='train')
|
|
ms_image_train = PyDataset.from_hf_dataset(
|
|
hfdata.load_dataset('beans', split='train'))
|
|
self.assertEqual(ms_ds_full['train'][0], ms_ds_full_hf['train'][0])
|
|
self.assertEqual(ms_ds_full['validation'][0],
|
|
ms_ds_full_hf['validation'][0])
|
|
self.assertEqual(ms_ds_train[0], ms_ds_train_hf[0])
|
|
print(next(iter(ms_ds_full['train'])))
|
|
print(next(iter(ms_ds_train)))
|
|
print(next(iter(ms_image_train)))
|
|
|
|
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
|
|
@require_torch
|
|
def test_to_torch_dataset_text(self):
|
|
model_id = 'damo/bert-base-sst2'
|
|
nlp_model = Model.from_pretrained(model_id)
|
|
preprocessor = SequenceClassificationPreprocessor(
|
|
nlp_model.model_dir,
|
|
first_sequence='context',
|
|
second_sequence=None)
|
|
ms_ds_train = PyDataset.load('squad', split='train')
|
|
pt_dataset = ms_ds_train.to_torch_dataset(preprocessors=preprocessor)
|
|
import torch
|
|
dataloader = torch.utils.data.DataLoader(pt_dataset, batch_size=5)
|
|
print(next(iter(dataloader)))
|
|
|
|
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
|
|
@require_tf
|
|
def test_to_tf_dataset_text(self):
|
|
import tensorflow as tf
|
|
tf.compat.v1.enable_eager_execution()
|
|
model_id = 'damo/bert-base-sst2'
|
|
nlp_model = Model.from_pretrained(model_id)
|
|
preprocessor = SequenceClassificationPreprocessor(
|
|
nlp_model.model_dir,
|
|
first_sequence='context',
|
|
second_sequence=None)
|
|
ms_ds_train = PyDataset.load('squad', split='train')
|
|
tf_dataset = ms_ds_train.to_tf_dataset(
|
|
batch_size=5,
|
|
shuffle=True,
|
|
preprocessors=preprocessor,
|
|
drop_remainder=True)
|
|
print(next(iter(tf_dataset)))
|
|
|
|
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
|
|
@require_torch
|
|
def test_to_torch_dataset_img(self):
|
|
ms_image_train = PyDataset.from_hf_dataset(
|
|
hfdata.load_dataset('beans', split='train'))
|
|
pt_dataset = ms_image_train.to_torch_dataset(
|
|
preprocessors=ImgPreprocessor(
|
|
image_path='image_file_path', label='labels'))
|
|
import torch
|
|
dataloader = torch.utils.data.DataLoader(pt_dataset, batch_size=5)
|
|
print(next(iter(dataloader)))
|
|
|
|
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
|
|
@require_tf
|
|
def test_to_tf_dataset_img(self):
|
|
import tensorflow as tf
|
|
tf.compat.v1.enable_eager_execution()
|
|
ms_image_train = PyDataset.load('beans', split='train')
|
|
tf_dataset = ms_image_train.to_tf_dataset(
|
|
batch_size=5,
|
|
shuffle=True,
|
|
preprocessors=ImgPreprocessor(image_path='image_file_path'),
|
|
drop_remainder=True,
|
|
label_cols='labels')
|
|
print(next(iter(tf_dataset)))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|