Files
modelscope/tests/preprocessors/test_nlp.py
zhangzhicheng.zzc d721fabb34 [to #42322933]bert with sequence classification / token classification/ fill mask refactor
1.新增支持原始bert模型(非easynlp的 backbone prefix版本)
2.支持bert的在sequence classification/fill mask /token classification上的backbone head形式
3.统一了sequence classification几个任务的pipeline到一个类
4.fill mask 支持backbone head形式
5.token classification的几个子任务(ner,word seg, part of speech)的preprocessor 统一到了一起TokenClassificationPreprocessor
6. sequence classification的几个子任务(single classification, pair classification)的preprocessor 统一到了一起SequenceClassificationPreprocessor
7. 改动register中 cls的group_key 赋值位置,之前的group_key在多个decorators的情况下,会被覆盖,obj_cls的group_key信息不正确
8. 基于backbone head形式将 原本group_key和 module同名的情况尝试做调整,如下在modelscope/pipelines/nlp/sequence_classification_pipeline.py 中 
原本
 @PIPELINES.register_module(
    Tasks.sentiment_classification, module_name=Pipelines.sentiment_classification)
改成
@PIPELINES.register_module(
    Tasks.text_classification, module_name=Pipelines.sentiment_classification)
相应的configuration.json也有改动,这样的改动更符合任务和pipline(子任务)的关系。
8. 其他相应改动为支持上述功能
        Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/10041463
2022-09-27 23:08:33 +08:00

114 lines
5.1 KiB
Python

# Copyright (c) Alibaba, Inc. and its affiliates.
import unittest
from modelscope.preprocessors import build_preprocessor, nlp
from modelscope.utils.constant import Fields, InputFields
from modelscope.utils.logger import get_logger
logger = get_logger()
class NLPPreprocessorTest(unittest.TestCase):
def test_tokenize(self):
cfg = dict(type='Tokenize', tokenizer_name='bert-base-cased')
preprocessor = build_preprocessor(cfg, Fields.nlp)
input = {
InputFields.text:
'Do not meddle in the affairs of wizards, '
'for they are subtle and quick to anger.'
}
output = preprocessor(input)
self.assertTrue(InputFields.text in output)
self.assertEqual(output['input_ids'], [
101, 2091, 1136, 1143, 13002, 1107, 1103, 5707, 1104, 16678, 1116,
117, 1111, 1152, 1132, 11515, 1105, 3613, 1106, 4470, 119, 102
])
self.assertEqual(
output['token_type_ids'],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
self.assertEqual(
output['attention_mask'],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1])
def test_token_classification_tokenize(self):
with self.subTest(tokenizer_type='bert'):
cfg = dict(
type='token-cls-tokenizer',
model_dir='bert-base-cased',
label2id={
'O': 0,
'B': 1,
'I': 2
})
preprocessor = build_preprocessor(cfg, Fields.nlp)
input = 'Do not meddle in the affairs of wizards, ' \
'for they are subtle and quick to anger.'
output = preprocessor(input)
self.assertTrue(InputFields.text in output)
self.assertEqual(output['input_ids'].tolist()[0], [
101, 2091, 1136, 1143, 13002, 1107, 1103, 5707, 1104, 16678,
1116, 117, 1111, 1152, 1132, 11515, 1105, 3613, 1106, 4470,
119, 102
])
self.assertEqual(output['attention_mask'].tolist()[0], [
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1
])
self.assertEqual(output['label_mask'].tolist()[0], [
False, True, True, True, False, True, True, True, True, True,
False, True, True, True, True, True, True, True, True, True,
True, False
])
self.assertEqual(output['offset_mapping'], [(0, 2), (3, 6),
(7, 13), (14, 16),
(17, 20), (21, 28),
(29, 31), (32, 39),
(39, 40), (41, 44),
(45, 49), (50, 53),
(54, 60), (61, 64),
(65, 70), (71, 73),
(74, 79), (79, 80)])
with self.subTest(tokenizer_type='roberta'):
cfg = dict(
type='token-cls-tokenizer',
model_dir='xlm-roberta-base',
label2id={
'O': 0,
'B': 1,
'I': 2
})
preprocessor = build_preprocessor(cfg, Fields.nlp)
input = 'Do not meddle in the affairs of wizards, ' \
'for they are subtle and quick to anger.'
output = preprocessor(input)
self.assertTrue(InputFields.text in output)
self.assertEqual(output['input_ids'].tolist()[0], [
0, 984, 959, 128, 19298, 23, 70, 103086, 7, 111, 6, 44239,
99397, 4, 100, 1836, 621, 1614, 17991, 136, 63773, 47, 348, 56,
5, 2
])
self.assertEqual(output['attention_mask'].tolist()[0], [
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1
])
self.assertEqual(output['label_mask'].tolist()[0], [
False, True, True, True, False, True, True, True, False, True,
True, False, False, False, True, True, True, True, False, True,
True, True, True, False, False, False
])
self.assertEqual(output['offset_mapping'], [(0, 2), (3, 6),
(7, 13), (14, 16),
(17, 20), (21, 28),
(29, 31), (32, 40),
(41, 44), (45, 49),
(50, 53), (54, 60),
(61, 64), (65, 70),
(71, 73), (74, 80)])
if __name__ == '__main__':
unittest.main()