mirror of
https://github.com/modelscope/modelscope.git
synced 2025-12-23 11:39:26 +01:00
1.新增支持原始bert模型(非easynlp的 backbone prefix版本)
2.支持bert的在sequence classification/fill mask /token classification上的backbone head形式
3.统一了sequence classification几个任务的pipeline到一个类
4.fill mask 支持backbone head形式
5.token classification的几个子任务(ner,word seg, part of speech)的preprocessor 统一到了一起TokenClassificationPreprocessor
6. sequence classification的几个子任务(single classification, pair classification)的preprocessor 统一到了一起SequenceClassificationPreprocessor
7. 改动register中 cls的group_key 赋值位置,之前的group_key在多个decorators的情况下,会被覆盖,obj_cls的group_key信息不正确
8. 基于backbone head形式将 原本group_key和 module同名的情况尝试做调整,如下在modelscope/pipelines/nlp/sequence_classification_pipeline.py 中
原本
@PIPELINES.register_module(
Tasks.sentiment_classification, module_name=Pipelines.sentiment_classification)
改成
@PIPELINES.register_module(
Tasks.text_classification, module_name=Pipelines.sentiment_classification)
相应的configuration.json也有改动,这样的改动更符合任务和pipline(子任务)的关系。
8. 其他相应改动为支持上述功能
Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/10041463
77 lines
3.3 KiB
Python
77 lines
3.3 KiB
Python
# Copyright (c) Alibaba, Inc. and its affiliates.
|
||
import unittest
|
||
|
||
from modelscope.hub.snapshot_download import snapshot_download
|
||
from modelscope.models import Model
|
||
from modelscope.models.nlp.task_models.sequence_classification import \
|
||
SequenceClassificationModel
|
||
from modelscope.pipelines import pipeline
|
||
from modelscope.pipelines.nlp import SequenceClassificationPipeline
|
||
from modelscope.preprocessors import SequenceClassificationPreprocessor
|
||
from modelscope.utils.constant import Tasks
|
||
from modelscope.utils.demo_utils import DemoCompatibilityCheck
|
||
from modelscope.utils.test_utils import test_level
|
||
|
||
|
||
class SentimentClassificationTaskModelTest(unittest.TestCase,
|
||
DemoCompatibilityCheck):
|
||
|
||
def setUp(self) -> None:
|
||
self.task = Tasks.text_classification
|
||
self.model_id = 'damo/nlp_structbert_sentiment-classification_chinese-base'
|
||
|
||
sentence1 = '启动的时候很大声音,然后就会听到1.2秒的卡察的声音,类似齿轮摩擦的声音'
|
||
|
||
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
|
||
def test_run_with_direct_file_download(self):
|
||
cache_path = snapshot_download(self.model_id, revision='beta')
|
||
tokenizer = SequenceClassificationPreprocessor(cache_path)
|
||
model = SequenceClassificationModel.from_pretrained(
|
||
self.model_id, num_labels=2, revision='beta')
|
||
pipeline1 = SequenceClassificationPipeline(
|
||
model, preprocessor=tokenizer)
|
||
pipeline2 = pipeline(
|
||
Tasks.text_classification, model=model, preprocessor=tokenizer)
|
||
print(f'sentence1: {self.sentence1}\n'
|
||
f'pipeline1:{pipeline1(input=self.sentence1)}')
|
||
print(f'sentence1: {self.sentence1}\n'
|
||
f'pipeline1: {pipeline2(input=self.sentence1)}')
|
||
|
||
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
|
||
def test_run_with_model_from_modelhub(self):
|
||
model = Model.from_pretrained(self.model_id, revision='beta')
|
||
tokenizer = SequenceClassificationPreprocessor(model.model_dir)
|
||
pipeline_ins = pipeline(
|
||
task=Tasks.text_classification,
|
||
model=model,
|
||
preprocessor=tokenizer)
|
||
print(pipeline_ins(input=self.sentence1))
|
||
self.assertTrue(
|
||
isinstance(pipeline_ins.model, SequenceClassificationModel))
|
||
|
||
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
||
def test_run_with_model_name(self):
|
||
pipeline_ins = pipeline(
|
||
task=Tasks.text_classification,
|
||
model=self.model_id,
|
||
model_revision='beta')
|
||
print(pipeline_ins(input=self.sentence1))
|
||
self.assertTrue(
|
||
isinstance(pipeline_ins.model, SequenceClassificationModel))
|
||
|
||
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
||
def test_run_with_default_model(self):
|
||
pipeline_ins = pipeline(
|
||
task=Tasks.text_classification, model_revision='beta')
|
||
print(pipeline_ins(input=self.sentence1))
|
||
self.assertTrue(
|
||
isinstance(pipeline_ins.model, SequenceClassificationModel))
|
||
|
||
@unittest.skip('demo compatibility test is only enabled on a needed-basis')
|
||
def test_demo_compatibility(self):
|
||
self.compatibility_check()
|
||
|
||
|
||
if __name__ == '__main__':
|
||
unittest.main()
|