Files
modelscope/tests/pipelines/test_deberta_tasks.py
zhangzhicheng.zzc d721fabb34 [to #42322933]bert with sequence classification / token classification/ fill mask refactor
1.新增支持原始bert模型(非easynlp的 backbone prefix版本)
2.支持bert的在sequence classification/fill mask /token classification上的backbone head形式
3.统一了sequence classification几个任务的pipeline到一个类
4.fill mask 支持backbone head形式
5.token classification的几个子任务(ner,word seg, part of speech)的preprocessor 统一到了一起TokenClassificationPreprocessor
6. sequence classification的几个子任务(single classification, pair classification)的preprocessor 统一到了一起SequenceClassificationPreprocessor
7. 改动register中 cls的group_key 赋值位置,之前的group_key在多个decorators的情况下,会被覆盖,obj_cls的group_key信息不正确
8. 基于backbone head形式将 原本group_key和 module同名的情况尝试做调整,如下在modelscope/pipelines/nlp/sequence_classification_pipeline.py 中 
原本
 @PIPELINES.register_module(
    Tasks.sentiment_classification, module_name=Pipelines.sentiment_classification)
改成
@PIPELINES.register_module(
    Tasks.text_classification, module_name=Pipelines.sentiment_classification)
相应的configuration.json也有改动,这样的改动更符合任务和pipline(子任务)的关系。
8. 其他相应改动为支持上述功能
        Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/10041463
2022-09-27 23:08:33 +08:00

61 lines
2.5 KiB
Python

# Copyright (c) Alibaba, Inc. and its affiliates.
import unittest
import torch
from modelscope.hub.snapshot_download import snapshot_download
from modelscope.models import Model
from modelscope.models.nlp import DebertaV2ForMaskedLM
from modelscope.pipelines import pipeline
from modelscope.pipelines.nlp import FillMaskPipeline
from modelscope.preprocessors import NLPPreprocessor
from modelscope.utils.constant import Tasks
from modelscope.utils.test_utils import test_level
class DeBERTaV2TaskTest(unittest.TestCase):
model_id_deberta = 'damo/nlp_debertav2_fill-mask_chinese-lite'
ori_text = '你师父差得动你,你师父可差不动我。'
test_input = '你师父差得动你,你师父可[MASK]不动我。'
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
def test_run_by_direct_model_download(self):
model_dir = snapshot_download(self.model_id_deberta)
preprocessor = NLPPreprocessor(
model_dir, first_sequence='sentence', second_sequence=None)
model = DebertaV2ForMaskedLM.from_pretrained(model_dir)
pipeline1 = FillMaskPipeline(model, preprocessor)
pipeline2 = pipeline(
Tasks.fill_mask, model=model, preprocessor=preprocessor)
ori_text = self.ori_text
test_input = self.test_input
print(f'\nori_text: {ori_text}\ninput: {test_input}\npipeline1: '
f'{pipeline1(test_input)}\npipeline2: {pipeline2(test_input)}\n')
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_run_with_model_from_modelhub(self):
# sbert
print(self.model_id_deberta)
model = Model.from_pretrained(self.model_id_deberta)
preprocessor = NLPPreprocessor(
model.model_dir, first_sequence='sentence', second_sequence=None)
pipeline_ins = pipeline(
task=Tasks.fill_mask, model=model, preprocessor=preprocessor)
print(
f'\nori_text: {self.ori_text}\ninput: {self.test_input}\npipeline: '
f'{pipeline_ins(self.test_input)}\n')
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_run_with_model_name(self):
pipeline_ins = pipeline(
task=Tasks.fill_mask, model=self.model_id_deberta)
ori_text = self.ori_text
test_input = self.test_input
print(f'\nori_text: {ori_text}\ninput: {test_input}\npipeline: '
f'{pipeline_ins(test_input)}\n')
if __name__ == '__main__':
unittest.main()