mirror of
https://github.com/modelscope/modelscope.git
synced 2025-12-22 19:19:21 +01:00
1.新增支持原始bert模型(非easynlp的 backbone prefix版本)
2.支持bert的在sequence classification/fill mask /token classification上的backbone head形式
3.统一了sequence classification几个任务的pipeline到一个类
4.fill mask 支持backbone head形式
5.token classification的几个子任务(ner,word seg, part of speech)的preprocessor 统一到了一起TokenClassificationPreprocessor
6. sequence classification的几个子任务(single classification, pair classification)的preprocessor 统一到了一起SequenceClassificationPreprocessor
7. 改动register中 cls的group_key 赋值位置,之前的group_key在多个decorators的情况下,会被覆盖,obj_cls的group_key信息不正确
8. 基于backbone head形式将 原本group_key和 module同名的情况尝试做调整,如下在modelscope/pipelines/nlp/sequence_classification_pipeline.py 中
原本
@PIPELINES.register_module(
Tasks.sentiment_classification, module_name=Pipelines.sentiment_classification)
改成
@PIPELINES.register_module(
Tasks.text_classification, module_name=Pipelines.sentiment_classification)
相应的configuration.json也有改动,这样的改动更符合任务和pipline(子任务)的关系。
8. 其他相应改动为支持上述功能
Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/10041463
96 lines
3.7 KiB
Python
96 lines
3.7 KiB
Python
# Copyright (c) Alibaba, Inc. and its affiliates.
|
|
|
|
import os
|
|
import shutil
|
|
import tempfile
|
|
import time
|
|
import unittest
|
|
from pathlib import Path
|
|
|
|
from modelscope.utils.ast_utils import AstScaning, FilesAstScaning, load_index
|
|
|
|
p = Path(__file__)
|
|
|
|
MODELSCOPE_PATH = p.resolve().parents[2].joinpath('modelscope')
|
|
|
|
|
|
class AstScaningTest(unittest.TestCase):
|
|
|
|
def setUp(self):
|
|
print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
|
|
self.tmp_dir = tempfile.TemporaryDirectory().name
|
|
self.test_file = os.path.join(self.tmp_dir, 'test.py')
|
|
if not os.path.exists(self.tmp_dir):
|
|
os.makedirs(self.tmp_dir)
|
|
|
|
def tearDown(self):
|
|
super().tearDown()
|
|
shutil.rmtree(self.tmp_dir)
|
|
|
|
def test_ast_scaning_class(self):
|
|
astScaner = AstScaning()
|
|
pipeline_file = os.path.join(MODELSCOPE_PATH, 'pipelines', 'nlp',
|
|
'text_generation_pipeline.py')
|
|
output = astScaner.generate_ast(pipeline_file)
|
|
self.assertTrue(output['imports'] is not None)
|
|
self.assertTrue(output['from_imports'] is not None)
|
|
self.assertTrue(output['decorators'] is not None)
|
|
imports, from_imports, decorators = output['imports'], output[
|
|
'from_imports'], output['decorators']
|
|
self.assertIsInstance(imports, dict)
|
|
self.assertIsInstance(from_imports, dict)
|
|
self.assertIsInstance(decorators, list)
|
|
self.assertListEqual(list(set(imports.keys()) - set(['torch'])), [])
|
|
self.assertEqual(len(from_imports.keys()), 7)
|
|
self.assertTrue(from_imports['modelscope.metainfo'] is not None)
|
|
self.assertEqual(from_imports['modelscope.metainfo'], ['Pipelines'])
|
|
self.assertEqual(decorators,
|
|
[('PIPELINES', 'text-generation', 'text-generation')])
|
|
|
|
def test_files_scaning_method(self):
|
|
fileScaner = FilesAstScaning()
|
|
output = fileScaner.get_files_scan_results()
|
|
self.assertTrue(output['index'] is not None)
|
|
self.assertTrue(output['requirements'] is not None)
|
|
index, requirements = output['index'], output['requirements']
|
|
self.assertIsInstance(index, dict)
|
|
self.assertIsInstance(requirements, dict)
|
|
self.assertIsInstance(list(index.keys())[0], tuple)
|
|
index_0 = list(index.keys())[0]
|
|
self.assertIsInstance(index[index_0], dict)
|
|
self.assertTrue(index[index_0]['imports'] is not None)
|
|
self.assertIsInstance(index[index_0]['imports'], list)
|
|
self.assertTrue(index[index_0]['module'] is not None)
|
|
self.assertIsInstance(index[index_0]['module'], str)
|
|
index_0 = list(requirements.keys())[0]
|
|
self.assertIsInstance(requirements[index_0], list)
|
|
|
|
def test_file_mtime_md5_method(self):
|
|
fileScaner = FilesAstScaning()
|
|
# create first file
|
|
with open(self.test_file, 'w', encoding='utf-8') as f:
|
|
f.write('This is the new test!')
|
|
|
|
md5_1 = fileScaner.files_mtime_md5(self.tmp_dir, [])
|
|
md5_2 = fileScaner.files_mtime_md5(self.tmp_dir, [])
|
|
self.assertEqual(md5_1, md5_2)
|
|
time.sleep(2)
|
|
# case of revise
|
|
with open(self.test_file, 'w', encoding='utf-8') as f:
|
|
f.write('test again')
|
|
md5_3 = fileScaner.files_mtime_md5(self.tmp_dir, [])
|
|
self.assertNotEqual(md5_1, md5_3)
|
|
|
|
# case of create
|
|
self.test_file_new = os.path.join(self.tmp_dir, 'test_1.py')
|
|
time.sleep(2)
|
|
with open(self.test_file_new, 'w', encoding='utf-8') as f:
|
|
f.write('test again')
|
|
md5_4 = fileScaner.files_mtime_md5(self.tmp_dir, [])
|
|
self.assertNotEqual(md5_1, md5_4)
|
|
self.assertNotEqual(md5_3, md5_4)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|