Files
modelscope/tests/trainers/test_image_instance_segmentation_trainer.py
xingjun.wxj e02a260c93 Refactor the task_datasets module
Refactor the task_datasets module:

1. Add new module modelscope.msdatasets.dataset_cls.custom_datasets.
2. Add new function: modelscope.msdatasets.ms_dataset.MsDataset.to_custom_dataset().
2. Add calling to_custom_dataset() func in MsDataset.load() to adapt new custom_datasets module.
3. Refactor the pipeline for loading custom dataset: 
	1) Only use MsDataset.load() function to load the custom datasets.
	2) Combine MsDataset.load() with class EpochBasedTrainer.
4. Add new entry func for building datasets in EpochBasedTrainer: see modelscope.trainers.trainer.EpochBasedTrainer.build_dataset()
5. Add new func to build the custom dataset from model configuration, see: modelscope.trainers.trainer.EpochBasedTrainer.build_dataset_from_cfg()
6. Add new registry function for building custom datasets, see: modelscope.msdatasets.dataset_cls.custom_datasets.builder.build_custom_dataset()
7. Refine the class SiameseUIETrainer to adapt the new custom_datasets module.
8. Add class TorchCustomDataset as a superclass for custom datasets classes.
9. To move modules/classes/functions:
	1) Move module msdatasets.audio to custom_datasets
	2) Move module msdatasets.cv to custom_datasets
	3) Move module bad_image_detecting to custom_datasets
	4) Move module damoyolo to custom_datasets
	5) Move module face_2d_keypoints to custom_datasets
	6) Move module hand_2d_keypoints to custom_datasets
	7) Move module human_wholebody_keypoint to custom_datasets
	8) Move module image_classification to custom_datasets
	9) Move module image_inpainting to custom_datasets
	10) Move module image_portrait_enhancement to custom_datasets
	11) Move module image_quality_assessment_degradation to custom_datasets
	12) Move module image_quality_assmessment_mos to custom_datasets
	13) Move class LanguageGuidedVideoSummarizationDataset to custom_datasets
	14) Move class MGeoRankingDataset to custom_datasets
	15) Move module movie_scene_segmentation custom_datasets
	16) Move module object_detection to custom_datasets
	17) Move module referring_video_object_segmentation to custom_datasets
	18) Move module sidd_image_denoising to custom_datasets
	19) Move module video_frame_interpolation to custom_datasets
	20) Move module video_stabilization to custom_datasets
	21) Move module video_super_resolution to custom_datasets
	22) Move class GoproImageDeblurringDataset to custom_datasets
	23) Move class EasyCVBaseDataset to custom_datasets
	24) Move class ImageInstanceSegmentationCocoDataset to custom_datasets
	25) Move class RedsImageDeblurringDataset to custom_datasets
	26) Move class TextRankingDataset to custom_datasets
	27) Move class VecoDataset to custom_datasets
	28) Move class VideoSummarizationDataset to custom_datasets
10. To delete modules/functions/classes:
	1) Del module task_datasets
	2) Del to_task_dataset() in EpochBasedTrainer
	3) Del build_dataset() in EpochBasedTrainer and renew a same name function.
11. Rename class Datasets to CustomDatasets in metainfo.py

Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/11872747
2023-03-10 09:03:32 +08:00

123 lines
4.5 KiB
Python

# Copyright (c) Alibaba, Inc. and its affiliates.
import os
import shutil
import tempfile
import unittest
import zipfile
from functools import partial
from modelscope.hub.snapshot_download import snapshot_download
from modelscope.metainfo import Trainers
from modelscope.models.cv.image_instance_segmentation import \
CascadeMaskRCNNSwinModel
from modelscope.msdatasets import MsDataset
from modelscope.trainers import build_trainer
from modelscope.utils.config import Config, ConfigDict
from modelscope.utils.constant import DownloadMode, ModelFile
from modelscope.utils.test_utils import test_level
class TestImageInstanceSegmentationTrainer(unittest.TestCase):
model_id = 'damo/cv_swin-b_image-instance-segmentation_coco'
def setUp(self):
print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
cache_path = snapshot_download(self.model_id)
config_path = os.path.join(cache_path, ModelFile.CONFIGURATION)
cfg = Config.from_file(config_path)
max_epochs = cfg.train.max_epochs
samples_per_gpu = cfg.train.dataloader.batch_size_per_gpu
try:
train_data_cfg = cfg.dataset.train
val_data_cfg = cfg.dataset.val
except Exception:
train_data_cfg = None
val_data_cfg = None
if train_data_cfg is None:
# use default toy data
train_data_cfg = ConfigDict(
name='pets_small', split='train', test_mode=False)
if val_data_cfg is None:
val_data_cfg = ConfigDict(
name='pets_small', split='validation', test_mode=True)
self.train_dataset = MsDataset.load(
dataset_name=train_data_cfg.name,
split=train_data_cfg.split,
test_mode=train_data_cfg.test_mode,
download_mode=DownloadMode.FORCE_REDOWNLOAD)
assert self.train_dataset.config_kwargs['classes']
assert next(
iter(self.train_dataset.config_kwargs['split_config'].values()))
self.eval_dataset = MsDataset.load(
dataset_name=val_data_cfg.name,
split=val_data_cfg.split,
test_mode=val_data_cfg.test_mode,
download_mode=DownloadMode.FORCE_REDOWNLOAD)
assert self.eval_dataset.config_kwargs['classes']
assert next(
iter(self.eval_dataset.config_kwargs['split_config'].values()))
from mmcv.parallel import collate
self.collate_fn = partial(collate, samples_per_gpu=samples_per_gpu)
self.max_epochs = max_epochs
self.tmp_dir = tempfile.TemporaryDirectory().name
if not os.path.exists(self.tmp_dir):
os.makedirs(self.tmp_dir)
def tearDown(self):
shutil.rmtree(self.tmp_dir)
super().tearDown()
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_trainer(self):
kwargs = dict(
model=self.model_id,
data_collator=self.collate_fn,
train_dataset=self.train_dataset,
eval_dataset=self.eval_dataset,
work_dir=self.tmp_dir)
trainer = build_trainer(
name=Trainers.image_instance_segmentation, default_args=kwargs)
trainer.train()
results_files = os.listdir(self.tmp_dir)
self.assertIn(f'{trainer.timestamp}.log.json', results_files)
for i in range(self.max_epochs):
self.assertIn(f'epoch_{i+1}.pth', results_files)
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
def test_trainer_with_model_and_args(self):
tmp_dir = tempfile.TemporaryDirectory().name
if not os.path.exists(tmp_dir):
os.makedirs(tmp_dir)
cache_path = snapshot_download(self.model_id)
model = CascadeMaskRCNNSwinModel.from_pretrained(cache_path)
kwargs = dict(
cfg_file=os.path.join(cache_path, ModelFile.CONFIGURATION),
model=model,
data_collator=self.collate_fn,
train_dataset=self.train_dataset,
eval_dataset=self.eval_dataset,
work_dir=self.tmp_dir)
trainer = build_trainer(
name=Trainers.image_instance_segmentation, default_args=kwargs)
trainer.train()
results_files = os.listdir(self.tmp_dir)
self.assertIn(f'{trainer.timestamp}.log.json', results_files)
for i in range(self.max_epochs):
self.assertIn(f'epoch_{i+1}.pth', results_files)
if __name__ == '__main__':
unittest.main()