mirror of
https://github.com/modelscope/modelscope.git
synced 2025-12-25 12:39:25 +01:00
143 lines
5.0 KiB
Python
143 lines
5.0 KiB
Python
# Copyright 2022-2023 The Alibaba Fundamental Vision Team Authors. All rights reserved.
|
|
import os
|
|
import shutil
|
|
import tempfile
|
|
import unittest
|
|
|
|
from modelscope.metainfo import Trainers
|
|
from modelscope.msdatasets import MsDataset
|
|
from modelscope.trainers import build_trainer
|
|
from modelscope.utils.constant import DownloadMode
|
|
from modelscope.utils.test_utils import test_level
|
|
|
|
|
|
class TestEfficientDiffusionTuningTrainer(unittest.TestCase):
|
|
|
|
def setUp(self):
|
|
print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
|
|
|
|
self.train_dataset = MsDataset.load(
|
|
'controlnet_dataset_condition_fill50k',
|
|
namespace='damo',
|
|
split='train',
|
|
download_mode=DownloadMode.FORCE_REDOWNLOAD).to_hf_dataset( # noqa
|
|
).select(range(100)) # noqa
|
|
self.eval_dataset = MsDataset.load(
|
|
'controlnet_dataset_condition_fill50k',
|
|
namespace='damo',
|
|
split='validation',
|
|
download_mode=DownloadMode.FORCE_REDOWNLOAD).to_hf_dataset( # noqa
|
|
).select(range(20)) # noqa
|
|
|
|
self.max_epochs = 1
|
|
|
|
self.tmp_dir = tempfile.TemporaryDirectory().name
|
|
if not os.path.exists(self.tmp_dir):
|
|
os.makedirs(self.tmp_dir)
|
|
|
|
def tearDown(self):
|
|
shutil.rmtree(self.tmp_dir)
|
|
super().tearDown()
|
|
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
|
def test_efficient_diffusion_tuning_lora_train(self):
|
|
model_id = 'damo/multi-modal_efficient-diffusion-tuning-lora'
|
|
|
|
def cfg_modify_fn(cfg):
|
|
cfg.train.max_epochs = self.max_epochs
|
|
cfg.train.lr_scheduler.T_max = self.max_epochs
|
|
cfg.model.inference = False
|
|
return cfg
|
|
|
|
kwargs = dict(
|
|
model=model_id,
|
|
work_dir=self.tmp_dir,
|
|
train_dataset=self.train_dataset,
|
|
eval_dataset=self.eval_dataset,
|
|
cfg_modify_fn=cfg_modify_fn)
|
|
|
|
trainer = build_trainer(
|
|
name=Trainers.efficient_diffusion_tuning, default_args=kwargs)
|
|
trainer.train()
|
|
result = trainer.evaluate()
|
|
print(f'Efficient-diffusion-tuning-lora train output: {result}.')
|
|
|
|
results_files = os.listdir(self.tmp_dir)
|
|
self.assertIn(f'{trainer.timestamp}.log.json', results_files)
|
|
for i in range(self.max_epochs):
|
|
self.assertIn(f'epoch_{i+1}.pth', results_files)
|
|
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
|
def test_efficient_diffusion_tuning_lora_eval(self):
|
|
model_id = 'damo/multi-modal_efficient-diffusion-tuning-lora'
|
|
|
|
def cfg_modify_fn(cfg):
|
|
cfg.model.inference = False
|
|
return cfg
|
|
|
|
kwargs = dict(
|
|
model=model_id,
|
|
work_dir=self.tmp_dir,
|
|
train_dataset=None,
|
|
eval_dataset=self.eval_dataset,
|
|
cfg_modify_fn=cfg_modify_fn)
|
|
|
|
trainer = build_trainer(
|
|
name=Trainers.efficient_diffusion_tuning, default_args=kwargs)
|
|
result = trainer.evaluate()
|
|
print(f'Efficient-diffusion-tuning-lora eval output: {result}.')
|
|
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
|
def test_efficient_diffusion_tuning_control_lora_train(self):
|
|
model_id = 'damo/multi-modal_efficient-diffusion-tuning-control-lora'
|
|
|
|
def cfg_modify_fn(cfg):
|
|
cfg.train.max_epochs = self.max_epochs
|
|
cfg.train.lr_scheduler.T_max = self.max_epochs
|
|
cfg.model.inference = False
|
|
return cfg
|
|
|
|
kwargs = dict(
|
|
model=model_id,
|
|
work_dir=self.tmp_dir,
|
|
train_dataset=self.train_dataset,
|
|
eval_dataset=self.eval_dataset,
|
|
cfg_modify_fn=cfg_modify_fn)
|
|
|
|
trainer = build_trainer(
|
|
name=Trainers.efficient_diffusion_tuning, default_args=kwargs)
|
|
trainer.train()
|
|
result = trainer.evaluate()
|
|
print(
|
|
f'Efficient-diffusion-tuning-control-lora train output: {result}.')
|
|
|
|
results_files = os.listdir(self.tmp_dir)
|
|
self.assertIn(f'{trainer.timestamp}.log.json', results_files)
|
|
for i in range(self.max_epochs):
|
|
self.assertIn(f'epoch_{i+1}.pth', results_files)
|
|
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
|
def test_efficient_diffusion_tuning_control_lora_eval(self):
|
|
model_id = 'damo/multi-modal_efficient-diffusion-tuning-control-lora'
|
|
|
|
def cfg_modify_fn(cfg):
|
|
cfg.model.inference = False
|
|
return cfg
|
|
|
|
kwargs = dict(
|
|
model=model_id,
|
|
work_dir=self.tmp_dir,
|
|
train_dataset=None,
|
|
eval_dataset=self.eval_dataset,
|
|
cfg_modify_fn=cfg_modify_fn)
|
|
|
|
trainer = build_trainer(
|
|
name=Trainers.efficient_diffusion_tuning, default_args=kwargs)
|
|
result = trainer.evaluate()
|
|
print(
|
|
f'Efficient-diffusion-tuning-control-lora eval output: {result}.')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|