Files
modelscope/tests/trainers/test_efficient_diffusion_tuning_trainer.py
2023-04-11 22:26:13 +08:00

143 lines
5.0 KiB
Python

# Copyright 2022-2023 The Alibaba Fundamental Vision Team Authors. All rights reserved.
import os
import shutil
import tempfile
import unittest
from modelscope.metainfo import Trainers
from modelscope.msdatasets import MsDataset
from modelscope.trainers import build_trainer
from modelscope.utils.constant import DownloadMode
from modelscope.utils.test_utils import test_level
class TestEfficientDiffusionTuningTrainer(unittest.TestCase):
def setUp(self):
print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
self.train_dataset = MsDataset.load(
'controlnet_dataset_condition_fill50k',
namespace='damo',
split='train',
download_mode=DownloadMode.FORCE_REDOWNLOAD).to_hf_dataset( # noqa
).select(range(100)) # noqa
self.eval_dataset = MsDataset.load(
'controlnet_dataset_condition_fill50k',
namespace='damo',
split='validation',
download_mode=DownloadMode.FORCE_REDOWNLOAD).to_hf_dataset( # noqa
).select(range(20)) # noqa
self.max_epochs = 1
self.tmp_dir = tempfile.TemporaryDirectory().name
if not os.path.exists(self.tmp_dir):
os.makedirs(self.tmp_dir)
def tearDown(self):
shutil.rmtree(self.tmp_dir)
super().tearDown()
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_efficient_diffusion_tuning_lora_train(self):
model_id = 'damo/multi-modal_efficient-diffusion-tuning-lora'
def cfg_modify_fn(cfg):
cfg.train.max_epochs = self.max_epochs
cfg.train.lr_scheduler.T_max = self.max_epochs
cfg.model.inference = False
return cfg
kwargs = dict(
model=model_id,
work_dir=self.tmp_dir,
train_dataset=self.train_dataset,
eval_dataset=self.eval_dataset,
cfg_modify_fn=cfg_modify_fn)
trainer = build_trainer(
name=Trainers.efficient_diffusion_tuning, default_args=kwargs)
trainer.train()
result = trainer.evaluate()
print(f'Efficient-diffusion-tuning-lora train output: {result}.')
results_files = os.listdir(self.tmp_dir)
self.assertIn(f'{trainer.timestamp}.log.json', results_files)
for i in range(self.max_epochs):
self.assertIn(f'epoch_{i+1}.pth', results_files)
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_efficient_diffusion_tuning_lora_eval(self):
model_id = 'damo/multi-modal_efficient-diffusion-tuning-lora'
def cfg_modify_fn(cfg):
cfg.model.inference = False
return cfg
kwargs = dict(
model=model_id,
work_dir=self.tmp_dir,
train_dataset=None,
eval_dataset=self.eval_dataset,
cfg_modify_fn=cfg_modify_fn)
trainer = build_trainer(
name=Trainers.efficient_diffusion_tuning, default_args=kwargs)
result = trainer.evaluate()
print(f'Efficient-diffusion-tuning-lora eval output: {result}.')
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_efficient_diffusion_tuning_control_lora_train(self):
model_id = 'damo/multi-modal_efficient-diffusion-tuning-control-lora'
def cfg_modify_fn(cfg):
cfg.train.max_epochs = self.max_epochs
cfg.train.lr_scheduler.T_max = self.max_epochs
cfg.model.inference = False
return cfg
kwargs = dict(
model=model_id,
work_dir=self.tmp_dir,
train_dataset=self.train_dataset,
eval_dataset=self.eval_dataset,
cfg_modify_fn=cfg_modify_fn)
trainer = build_trainer(
name=Trainers.efficient_diffusion_tuning, default_args=kwargs)
trainer.train()
result = trainer.evaluate()
print(
f'Efficient-diffusion-tuning-control-lora train output: {result}.')
results_files = os.listdir(self.tmp_dir)
self.assertIn(f'{trainer.timestamp}.log.json', results_files)
for i in range(self.max_epochs):
self.assertIn(f'epoch_{i+1}.pth', results_files)
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_efficient_diffusion_tuning_control_lora_eval(self):
model_id = 'damo/multi-modal_efficient-diffusion-tuning-control-lora'
def cfg_modify_fn(cfg):
cfg.model.inference = False
return cfg
kwargs = dict(
model=model_id,
work_dir=self.tmp_dir,
train_dataset=None,
eval_dataset=self.eval_dataset,
cfg_modify_fn=cfg_modify_fn)
trainer = build_trainer(
name=Trainers.efficient_diffusion_tuning, default_args=kwargs)
result = trainer.evaluate()
print(
f'Efficient-diffusion-tuning-control-lora eval output: {result}.')
if __name__ == '__main__':
unittest.main()