Files
modelscope/tests/trainers/hooks/test_checkpoint_hook.py
2022-08-04 14:07:14 +08:00

204 lines
5.9 KiB
Python

# Copyright (c) Alibaba, Inc. and its affiliates.
import os
import shutil
import tempfile
import unittest
import json
import numpy as np
import torch
from torch import nn
from modelscope.metainfo import Trainers
from modelscope.metrics.builder import METRICS, MetricKeys
from modelscope.trainers import build_trainer
from modelscope.utils.constant import LogKeys, ModelFile
from modelscope.utils.registry import default_group
from modelscope.utils.test_utils import create_dummy_test_dataset
def create_dummy_metric():
_global_iter = 0
@METRICS.register_module(
group_key=default_group, module_name='DummyMetric', force=True)
class DummyMetric:
_fake_acc_by_epoch = {1: 0.1, 2: 0.5, 3: 0.2}
def add(*args, **kwargs):
pass
def evaluate(self):
global _global_iter
_global_iter += 1
return {MetricKeys.ACCURACY: self._fake_acc_by_epoch[_global_iter]}
dummy_dataset = create_dummy_test_dataset(
np.random.random(size=(5, )), np.random.randint(0, 4, (1, )), 20)
class DummyModel(nn.Module):
def __init__(self):
super().__init__()
self.linear = nn.Linear(5, 4)
self.bn = nn.BatchNorm1d(4)
def forward(self, feat, labels):
x = self.linear(feat)
x = self.bn(x)
loss = torch.sum(x)
return dict(logits=x, loss=loss)
class CheckpointHookTest(unittest.TestCase):
def setUp(self):
print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
self.tmp_dir = tempfile.TemporaryDirectory().name
if not os.path.exists(self.tmp_dir):
os.makedirs(self.tmp_dir)
create_dummy_metric()
def tearDown(self):
super().tearDown()
shutil.rmtree(self.tmp_dir)
def test_checkpoint_hook(self):
global _global_iter
_global_iter = 0
json_cfg = {
'task': 'image_classification',
'train': {
'work_dir': self.tmp_dir,
'dataloader': {
'batch_size_per_gpu': 2,
'workers_per_gpu': 1
},
'optimizer': {
'type': 'SGD',
'lr': 0.01,
'options': {
'grad_clip': {
'max_norm': 2.0
}
}
},
'lr_scheduler': {
'type': 'StepLR',
'step_size': 2,
'options': {
'warmup': {
'type': 'LinearWarmup',
'warmup_iters': 2
}
}
},
'hooks': [{
'type': 'CheckpointHook',
'interval': 1
}]
}
}
config_path = os.path.join(self.tmp_dir, ModelFile.CONFIGURATION)
with open(config_path, 'w') as f:
json.dump(json_cfg, f)
trainer_name = Trainers.default
kwargs = dict(
cfg_file=config_path,
model=DummyModel(),
data_collator=None,
train_dataset=dummy_dataset,
max_epochs=2)
trainer = build_trainer(trainer_name, kwargs)
trainer.train()
results_files = os.listdir(self.tmp_dir)
self.assertIn(f'{LogKeys.EPOCH}_1.pth', results_files)
self.assertIn(f'{LogKeys.EPOCH}_2.pth', results_files)
class BestCkptSaverHookTest(unittest.TestCase):
def setUp(self):
print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
self.tmp_dir = tempfile.TemporaryDirectory().name
if not os.path.exists(self.tmp_dir):
os.makedirs(self.tmp_dir)
create_dummy_metric()
def tearDown(self):
super().tearDown()
shutil.rmtree(self.tmp_dir)
def test_best_checkpoint_hook(self):
global _global_iter
_global_iter = 0
json_cfg = {
'task': 'image_classification',
'train': {
'work_dir':
self.tmp_dir,
'dataloader': {
'batch_size_per_gpu': 2,
'workers_per_gpu': 1
},
'optimizer': {
'type': 'SGD',
'lr': 0.01
},
'lr_scheduler': {
'type': 'StepLR',
'step_size': 2
},
'hooks': [{
'type': 'BestCkptSaverHook',
'metric_key': MetricKeys.ACCURACY,
'rule': 'min'
}, {
'type': 'EvaluationHook',
'interval': 1,
}]
},
'evaluation': {
'dataloader': {
'batch_size_per_gpu': 2,
'workers_per_gpu': 1,
'shuffle': False
},
'metrics': ['DummyMetric']
}
}
config_path = os.path.join(self.tmp_dir, ModelFile.CONFIGURATION)
with open(config_path, 'w') as f:
json.dump(json_cfg, f)
trainer_name = Trainers.default
kwargs = dict(
cfg_file=config_path,
model=DummyModel(),
data_collator=None,
train_dataset=dummy_dataset,
eval_dataset=dummy_dataset,
max_epochs=3)
trainer = build_trainer(trainer_name, kwargs)
trainer.train()
results_files = os.listdir(self.tmp_dir)
self.assertIn(f'{LogKeys.EPOCH}_1.pth', results_files)
self.assertIn(f'{LogKeys.EPOCH}_2.pth', results_files)
self.assertIn(f'{LogKeys.EPOCH}_3.pth', results_files)
self.assertIn(f'best_{LogKeys.EPOCH}1_{MetricKeys.ACCURACY}0.1.pth',
results_files)
if __name__ == '__main__':
unittest.main()