Files
modelscope/tests/pipelines/test_image_local_feature_matching.py
Yisheng (Ethan) He 94ce1ebd7a Feature/LoFTR_image_local_feature_matching (#687)
* Add loftr image local feature matching.

* add pipeline doc str and remove example data as examples exists in data/test

* update pipeline doc str.

* add pipeline doc str

add pipeline doc str

---------

Co-authored-by: 翼生 <heyisheng.hys@alibaba-inc.com>
Co-authored-by: wenmeng zhou <wenmeng.zwm@alibaba-inc.com>
2024-01-17 21:51:29 +08:00

40 lines
1.3 KiB
Python

# Copyright (c) Alibaba, Inc. and its affiliates.
import unittest
from pathlib import Path
import cv2
import matplotlib.cm as cm
import numpy as np
from modelscope.outputs import OutputKeys
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
from modelscope.utils.cv.image_utils import match_pair_visualization
from modelscope.utils.test_utils import test_level
class ImageLocalFeatureMatchingTest(unittest.TestCase):
def setUp(self) -> None:
self.task = 'image-local-feature-matching'
self.model_id = 'Damo_XR_Lab/cv_resnet-transformer_local-feature-matching_outdoor-data'
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_image_local_feature_matching(self):
input_location = [[
'data/test/images/image_matching1.jpg',
'data/test/images/image_matching2.jpg'
]]
estimator = pipeline(Tasks.image_local_feature_matching, model=self.model_id)
result = estimator(input_location)
kpts0, kpts1, conf = result[0][OutputKeys.MATCHES]
vis_img = result[0][OutputKeys.OUTPUT_IMG]
cv2.imwrite("vis_demo.jpg", vis_img)
print('test_image_local_feature_matching DONE')
if __name__ == '__main__':
unittest.main()