Files
modelscope/tests/pipelines/test_text_to_speech.py
2022-08-10 15:42:48 +08:00

40 lines
1.3 KiB
Python

import unittest
# NOTICE: Tensorflow 1.15 seems not so compatible with pytorch.
# A segmentation fault may be raise by pytorch cpp library
# if 'import tensorflow' in front of 'import torch'.
# Puting a 'import torch' here can bypass this incompatibility.
import torch
from scipy.io.wavfile import write
from modelscope.outputs import OutputKeys
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
from modelscope.utils.logger import get_logger
from modelscope.utils.test_utils import test_level
import tensorflow as tf # isort:skip
logger = get_logger()
class TextToSpeechSambertHifigan16kPipelineTest(unittest.TestCase):
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_pipeline(self):
text = '今天北京天气怎么样?'
model_id = 'damo/speech_sambert-hifigan_tts_zhitian_emo_zh-cn_16k'
voice = 'zhitian_emo'
sambert_hifigan_tts = pipeline(
task=Tasks.text_to_speech, model=model_id)
self.assertTrue(sambert_hifigan_tts is not None)
output = sambert_hifigan_tts(input=text, voice=voice)
self.assertIsNotNone(output[OutputKeys.OUTPUT_PCM])
pcm = output[OutputKeys.OUTPUT_PCM]
write('output.wav', 16000, pcm)
if __name__ == '__main__':
unittest.main()