Files
modelscope/tests/pipelines/test_sentiment_classification.py
2022-08-06 22:00:26 +08:00

67 lines
2.9 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
# Copyright (c) Alibaba, Inc. and its affiliates.
import unittest
from modelscope.hub.snapshot_download import snapshot_download
from modelscope.models import Model
from modelscope.models.nlp.task_models.sequence_classification import \
SequenceClassificationModel
from modelscope.pipelines import pipeline
from modelscope.pipelines.nlp import SingleSentenceClassificationPipeline
from modelscope.preprocessors import SingleSentenceClassificationPreprocessor
from modelscope.utils.constant import Tasks
from modelscope.utils.test_utils import test_level
class SentimentClassificationTaskModelTest(unittest.TestCase):
model_id = 'damo/nlp_structbert_sentiment-classification_chinese-base'
sentence1 = '启动的时候很大声音然后就会听到1.2秒的卡察的声音,类似齿轮摩擦的声音'
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
def test_run_with_direct_file_download(self):
cache_path = snapshot_download(self.model_id)
tokenizer = SingleSentenceClassificationPreprocessor(cache_path)
model = SequenceClassificationModel.from_pretrained(
self.model_id, num_labels=2)
pipeline1 = SingleSentenceClassificationPipeline(
model, preprocessor=tokenizer)
pipeline2 = pipeline(
Tasks.sentiment_classification,
model=model,
preprocessor=tokenizer)
print(f'sentence1: {self.sentence1}\n'
f'pipeline1:{pipeline1(input=self.sentence1)}')
print()
print(f'sentence1: {self.sentence1}\n'
f'pipeline1: {pipeline2(input=self.sentence1)}')
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
def test_run_with_model_from_modelhub(self):
model = Model.from_pretrained(self.model_id)
tokenizer = SingleSentenceClassificationPreprocessor(model.model_dir)
pipeline_ins = pipeline(
task=Tasks.sentiment_classification,
model=model,
preprocessor=tokenizer)
print(pipeline_ins(input=self.sentence1))
self.assertTrue(
isinstance(pipeline_ins.model, SequenceClassificationModel))
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_run_with_model_name(self):
pipeline_ins = pipeline(
task=Tasks.sentiment_classification, model=self.model_id)
print(pipeline_ins(input=self.sentence1))
self.assertTrue(
isinstance(pipeline_ins.model, SequenceClassificationModel))
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_run_with_default_model(self):
pipeline_ins = pipeline(task=Tasks.sentiment_classification)
print(pipeline_ins(input=self.sentence1))
self.assertTrue(
isinstance(pipeline_ins.model, SequenceClassificationModel))
if __name__ == '__main__':
unittest.main()