Files
modelscope/tests/pipelines/test_named_entity_recognition.py
2022-08-06 12:22:17 +08:00

59 lines
2.4 KiB
Python

# Copyright (c) Alibaba, Inc. and its affiliates.
import unittest
from modelscope.hub.snapshot_download import snapshot_download
from modelscope.models import Model
from modelscope.models.nlp import TransformerCRFForNamedEntityRecognition
from modelscope.pipelines import pipeline
from modelscope.pipelines.nlp import NamedEntityRecognitionPipeline
from modelscope.preprocessors import NERPreprocessor
from modelscope.utils.constant import Tasks
from modelscope.utils.test_utils import test_level
class NamedEntityRecognitionTest(unittest.TestCase):
model_id = 'damo/nlp_raner_named-entity-recognition_chinese-base-news'
sentence = '这与温岭市新河镇的一个神秘的传说有关。'
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
def test_run_by_direct_model_download(self):
cache_path = snapshot_download(self.model_id)
tokenizer = NERPreprocessor(cache_path)
model = TransformerCRFForNamedEntityRecognition(
cache_path, tokenizer=tokenizer)
pipeline1 = NamedEntityRecognitionPipeline(
model, preprocessor=tokenizer)
pipeline2 = pipeline(
Tasks.named_entity_recognition,
model=model,
preprocessor=tokenizer)
print(f'sentence: {self.sentence}\n'
f'pipeline1:{pipeline1(input=self.sentence)}')
print()
print(f'pipeline2: {pipeline2(input=self.sentence)}')
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_run_with_model_from_modelhub(self):
model = Model.from_pretrained(self.model_id)
tokenizer = NERPreprocessor(model.model_dir)
pipeline_ins = pipeline(
task=Tasks.named_entity_recognition,
model=model,
preprocessor=tokenizer)
print(pipeline_ins(input=self.sentence))
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
def test_run_with_model_name(self):
pipeline_ins = pipeline(
task=Tasks.named_entity_recognition, model=self.model_id)
print(pipeline_ins(input=self.sentence))
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
def test_run_with_default_model(self):
pipeline_ins = pipeline(task=Tasks.named_entity_recognition)
print(pipeline_ins(input=self.sentence))
if __name__ == '__main__':
unittest.main()