mirror of
https://github.com/modelscope/modelscope.git
synced 2025-12-16 16:27:45 +01:00
Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/9662182 * clean up test level
59 lines
2.4 KiB
Python
59 lines
2.4 KiB
Python
# Copyright (c) Alibaba, Inc. and its affiliates.
|
|
import unittest
|
|
|
|
from modelscope.hub.snapshot_download import snapshot_download
|
|
from modelscope.models import Model
|
|
from modelscope.models.nlp import TransformerCRFForNamedEntityRecognition
|
|
from modelscope.pipelines import pipeline
|
|
from modelscope.pipelines.nlp import NamedEntityRecognitionPipeline
|
|
from modelscope.preprocessors import NERPreprocessor
|
|
from modelscope.utils.constant import Tasks
|
|
from modelscope.utils.test_utils import test_level
|
|
|
|
|
|
class NamedEntityRecognitionTest(unittest.TestCase):
|
|
model_id = 'damo/nlp_raner_named-entity-recognition_chinese-base-news'
|
|
sentence = '这与温岭市新河镇的一个神秘的传说有关。'
|
|
|
|
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
|
|
def test_run_by_direct_model_download(self):
|
|
cache_path = snapshot_download(self.model_id)
|
|
tokenizer = NERPreprocessor(cache_path)
|
|
model = TransformerCRFForNamedEntityRecognition(
|
|
cache_path, tokenizer=tokenizer)
|
|
pipeline1 = NamedEntityRecognitionPipeline(
|
|
model, preprocessor=tokenizer)
|
|
pipeline2 = pipeline(
|
|
Tasks.named_entity_recognition,
|
|
model=model,
|
|
preprocessor=tokenizer)
|
|
print(f'sentence: {self.sentence}\n'
|
|
f'pipeline1:{pipeline1(input=self.sentence)}')
|
|
print()
|
|
print(f'pipeline2: {pipeline2(input=self.sentence)}')
|
|
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
|
def test_run_with_model_from_modelhub(self):
|
|
model = Model.from_pretrained(self.model_id)
|
|
tokenizer = NERPreprocessor(model.model_dir)
|
|
pipeline_ins = pipeline(
|
|
task=Tasks.named_entity_recognition,
|
|
model=model,
|
|
preprocessor=tokenizer)
|
|
print(pipeline_ins(input=self.sentence))
|
|
|
|
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
|
|
def test_run_with_model_name(self):
|
|
pipeline_ins = pipeline(
|
|
task=Tasks.named_entity_recognition, model=self.model_id)
|
|
print(pipeline_ins(input=self.sentence))
|
|
|
|
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
|
|
def test_run_with_default_model(self):
|
|
pipeline_ins = pipeline(task=Tasks.named_entity_recognition)
|
|
print(pipeline_ins(input=self.sentence))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|