Files
modelscope/tests/pipelines/test_builder.py
2022-08-06 12:22:17 +08:00

87 lines
2.9 KiB
Python

# Copyright (c) Alibaba, Inc. and its affiliates.
import os
import unittest
from typing import Any, Dict, List, Union
from modelscope.fileio import io
from modelscope.models.base import Model
from modelscope.pipelines import Pipeline, pipeline
from modelscope.pipelines.builder import PIPELINES
from modelscope.utils.constant import (ConfigFields, Frameworks, ModelFile,
Tasks)
from modelscope.utils.logger import get_logger
logger = get_logger()
@PIPELINES.register_module(
group_key=Tasks.image_classification, module_name='custom_single_model')
class CustomSingleModelPipeline(Pipeline):
def __init__(self,
config_file: str = None,
model: List[Union[str, Model]] = None,
preprocessor=None,
**kwargs):
super().__init__(config_file, model, preprocessor, **kwargs)
assert isinstance(model, str), 'model is not str'
print(model)
def postprocess(self, inputs: Dict[str, Any]) -> Dict[str, Any]:
return super().postprocess(inputs)
@PIPELINES.register_module(
group_key=Tasks.image_classification, module_name='model1_model2')
class CustomMultiModelPipeline(Pipeline):
def __init__(self,
config_file: str = None,
model: List[Union[str, Model]] = None,
preprocessor=None,
**kwargs):
super().__init__(config_file, model, preprocessor, **kwargs)
assert isinstance(model, list), 'model is not list'
for m in model:
assert isinstance(m, str), 'submodel is not str'
print(m)
def postprocess(self, inputs: Dict[str, Any]) -> Dict[str, Any]:
return super().postprocess(inputs)
class PipelineInterfaceTest(unittest.TestCase):
def prepare_dir(self, dirname, pipeline_name):
if not os.path.exists(dirname):
os.makedirs(dirname)
cfg_file = os.path.join(dirname, ModelFile.CONFIGURATION)
cfg = {
ConfigFields.framework: Frameworks.torch,
ConfigFields.task: Tasks.image_classification,
ConfigFields.pipeline: {
'type': pipeline_name,
}
}
io.dump(cfg, cfg_file)
def setUp(self) -> None:
self.prepare_dir('/tmp/custom_single_model', 'custom_single_model')
self.prepare_dir('/tmp/model1', 'model1_model2')
self.prepare_dir('/tmp/model2', 'model1_model2')
def test_single_model(self):
pipe = pipeline(
Tasks.image_classification, model='/tmp/custom_single_model')
assert isinstance(pipe, CustomSingleModelPipeline)
def test_multi_model(self):
pipe = pipeline(
Tasks.image_classification, model=['/tmp/model1', '/tmp/model2'])
assert isinstance(pipe, CustomMultiModelPipeline)
if __name__ == '__main__':
unittest.main()