Files
modelscope/tests/pipelines/test_text_classification.py
wenmeng.zwm e288cf076e [to #42362853] refactor pipeline and standardize module_name
* using get_model to validate hub path 
* support reading pipeline info from configuration file
* add metainfo const
* update model type and pipeline type and fix UT
* relax requimrent for protobuf
* skip two dataset tests due to temporal failure
 
Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/9118154
2022-06-22 14:15:32 +08:00

106 lines
3.7 KiB
Python

# Copyright (c) Alibaba, Inc. and its affiliates.
import shutil
import unittest
import zipfile
from pathlib import Path
from modelscope.fileio import File
from modelscope.models import Model
from modelscope.models.nlp import BertForSequenceClassification
from modelscope.pipelines import SequenceClassificationPipeline, pipeline
from modelscope.preprocessors import SequenceClassificationPreprocessor
from modelscope.pydatasets import PyDataset
from modelscope.utils.constant import Hubs, Tasks
from modelscope.utils.test_utils import test_level
class SequenceClassificationTest(unittest.TestCase):
def setUp(self) -> None:
self.model_id = 'damo/bert-base-sst2'
def predict(self, pipeline_ins: SequenceClassificationPipeline):
from easynlp.appzoo import load_dataset
set = load_dataset('glue', 'sst2')
data = set['test']['sentence'][:3]
results = pipeline_ins(data[0])
print(results)
results = pipeline_ins(data[1])
print(results)
print(data)
def printDataset(self, dataset: PyDataset):
for i, r in enumerate(dataset):
if i > 10:
break
print(r)
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_run_with_model_from_modelhub(self):
model = Model.from_pretrained(self.model_id)
preprocessor = SequenceClassificationPreprocessor(
model.model_dir, first_sequence='sentence', second_sequence=None)
pipeline_ins = pipeline(
task=Tasks.text_classification,
model=model,
preprocessor=preprocessor)
self.predict(pipeline_ins)
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_run_with_model_name(self):
text_classification = pipeline(
task=Tasks.text_classification, model=self.model_id)
result = text_classification(
PyDataset.load(
'glue',
subset_name='sst2',
split='train',
target='sentence',
hub=Hubs.huggingface))
self.printDataset(result)
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
def test_run_with_default_model(self):
text_classification = pipeline(task=Tasks.text_classification)
result = text_classification(
PyDataset.load(
'glue',
subset_name='sst2',
split='train',
target='sentence',
hub=Hubs.huggingface))
self.printDataset(result)
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
def test_run_with_dataset(self):
model = Model.from_pretrained(self.model_id)
preprocessor = SequenceClassificationPreprocessor(
model.model_dir, first_sequence='sentence', second_sequence=None)
text_classification = pipeline(
Tasks.text_classification, model=model, preprocessor=preprocessor)
# loaded from huggingface dataset
dataset = PyDataset.load(
'glue',
subset_name='sst2',
split='train',
target='sentence',
hub=Hubs.huggingface)
result = text_classification(dataset)
self.printDataset(result)
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
def test_run_with_modelscope_dataset(self):
text_classification = pipeline(task=Tasks.text_classification)
# loaded from modelscope dataset
dataset = PyDataset.load(
'squad', split='train', target='context', hub=Hubs.modelscope)
result = text_classification(dataset)
self.printDataset(result)
if __name__ == '__main__':
unittest.main()