mirror of
https://github.com/modelscope/modelscope.git
synced 2025-12-16 16:27:45 +01:00
91 lines
3.1 KiB
Python
91 lines
3.1 KiB
Python
# Copyright (c) Alibaba, Inc. and its affiliates.
|
|
import os
|
|
import shutil
|
|
import subprocess
|
|
import sys
|
|
import tempfile
|
|
import unittest
|
|
|
|
from modelscope.metainfo import Trainers
|
|
from modelscope.msdatasets import MsDataset
|
|
from modelscope.trainers import build_trainer
|
|
from modelscope.utils.constant import DownloadMode
|
|
from modelscope.utils.file_utils import get_model_cache_dir
|
|
from modelscope.utils.test_utils import test_level
|
|
|
|
|
|
@unittest.skip(
|
|
"For detection2 compatible module 'PIL.Image' has no attribute 'LINEAR'")
|
|
class TestImageDefrcnFewShotTrainer(unittest.TestCase):
|
|
|
|
def setUp(self):
|
|
print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
|
|
cmd = [
|
|
sys.executable, '-m', 'pip', 'install', 'detectron2==0.3', '-f',
|
|
'https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html'
|
|
]
|
|
subprocess.run(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
|
|
|
self.tmp_dir = tempfile.TemporaryDirectory().name
|
|
if not os.path.exists(self.tmp_dir):
|
|
os.makedirs(self.tmp_dir)
|
|
|
|
self.model_id = 'damo/cv_resnet101_detection_fewshot-defrcn'
|
|
|
|
data_voc = MsDataset.load(
|
|
dataset_name='VOC_fewshot',
|
|
namespace='shimin2023',
|
|
split='train',
|
|
download_mode=DownloadMode.REUSE_DATASET_IF_EXISTS)
|
|
self.data_dir = os.path.join(
|
|
data_voc.config_kwargs['split_config']['train'], 'data')
|
|
|
|
def tearDown(self):
|
|
shutil.rmtree(self.tmp_dir)
|
|
super().tearDown()
|
|
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
|
def test_trainer(self):
|
|
|
|
split = 1
|
|
|
|
def base_cfg_modify_fn(cfg):
|
|
cfg.train.work_dir = self.tmp_dir
|
|
|
|
cfg.model.roi_heads.backward_scale = 0.75
|
|
cfg.model.roi_heads.num_classes = 15
|
|
cfg.model.roi_heads.freeze_feat = False
|
|
cfg.model.roi_heads.cls_dropout = False
|
|
cfg.model.weights = os.path.join(
|
|
get_model_cache_dir(self.model_id),
|
|
'ImageNetPretrained/MSRA/R-101.pkl')
|
|
|
|
cfg.datasets.root = self.data_dir
|
|
cfg.datasets.type = 'pascal_voc'
|
|
cfg.datasets.train = [
|
|
'voc_2007_trainval_base{}'.format(split),
|
|
'voc_2012_trainval_base{}'.format(split)
|
|
]
|
|
cfg.datasets.test = ['voc_2007_test_base{}'.format(split)]
|
|
cfg.input.min_size_test = 50
|
|
cfg.train.dataloader.ims_per_batch = 4
|
|
cfg.train.max_iter = 300
|
|
cfg.train.optimizer.lr = 0.001
|
|
cfg.train.lr_scheduler.warmup_iters = 100
|
|
|
|
cfg.test.pcb_enable = False
|
|
return cfg
|
|
|
|
kwargs = dict(model=self.model_id, cfg_modify_fn=base_cfg_modify_fn)
|
|
trainer = build_trainer(
|
|
name=Trainers.image_fewshot_detection, default_args=kwargs)
|
|
trainer.train()
|
|
|
|
results_files = os.listdir(self.tmp_dir)
|
|
self.assertIn('metrics.json', results_files)
|
|
self.assertIn('model_final.pth', results_files)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|