Files
modelscope/tests/pipelines/test_ofa_tasks.py
liuyhwangyh 82ee20f447 fix issue #845 (#861)
* fix #845

Co-authored-by: mulin.lyh <mulin.lyh@taobao.com>
2024-05-23 20:34:52 +08:00

373 lines
16 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
# Copyright (c) Alibaba, Inc. and its affiliates.
import os
import unittest
from os import path as osp
import cv2
from PIL import Image
from modelscope.models import Model
from modelscope.outputs import OutputKeys
from modelscope.pipelines import pipeline
from modelscope.utils.constant import Tasks
from modelscope.utils.cv.image_utils import created_boxed_image
from modelscope.utils.test_utils import test_level
class OfaTasksTest(unittest.TestCase):
def setUp(self) -> None:
self.output_dir = 'unittest_output'
os.makedirs(self.output_dir, exist_ok=True)
def save_img(self, image_in, box, image_out):
cv2.imwrite(
osp.join(self.output_dir, image_out),
created_boxed_image(image_in, box))
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
def test_run_with_image_captioning_with_model(self):
model = Model.from_pretrained('damo/ofa_image-caption_coco_large_en')
img_captioning = pipeline(
task=Tasks.image_captioning,
model=model,
)
image = 'data/test/images/image_captioning.png'
result = img_captioning(image)
print(result[OutputKeys.CAPTION])
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_run_with_image_captioning_with_name(self):
img_captioning = pipeline(
Tasks.image_captioning,
model='damo/ofa_image-caption_coco_large_en')
result = img_captioning('data/test/images/image_captioning.png')
print(result[OutputKeys.CAPTION])
img_captioning.model.num_return_sequences = 2
result = img_captioning('data/test/images/image_captioning.png')
print(result[OutputKeys.CAPTION])
# test batch infer
img_captioning.model.num_return_sequences = 1
results = img_captioning(
[{
'image': 'data/test/images/image_captioning.png'
} for _ in range(3)],
batch_size=2)
for r in results:
print(r[OutputKeys.CAPTION])
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_run_with_ocr_recognize_with_name(self):
ocr_recognize = pipeline(
Tasks.ocr_recognition,
model='damo/ofa_ocr-recognition_scene_base_zh')
result = ocr_recognize('data/test/images/image_ocr_recognition.jpg')
print(result[OutputKeys.TEXT])
# test batch infer
results = ocr_recognize(
['data/test/images/image_ocr_recognition.jpg' for _ in range(3)],
batch_size=2)
for r in results:
print(r[OutputKeys.TEXT])
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
def test_run_with_image_classification_with_model(self):
model = Model.from_pretrained(
'damo/ofa_image-classification_imagenet_large_en')
ofa_pipe = pipeline(Tasks.image_classification, model=model)
image = 'data/test/images/image_classification.png'
result = ofa_pipe(image)
print(result)
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_run_with_image_classification_with_name(self):
ofa_pipe = pipeline(
Tasks.image_classification,
model='damo/ofa_image-classification_imagenet_large_en')
image = 'data/test/images/image_classification.png'
result = ofa_pipe(image)
print(result)
# test batch infer
image = ['data/test/images/image_classification.png' for _ in range(3)]
results = ofa_pipe(image, batch_size=2)
for r in results:
print(r[OutputKeys.LABELS], r[OutputKeys.SCORES])
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
def test_run_with_summarization_with_model(self):
model = Model.from_pretrained(
'damo/ofa_summarization_gigaword_large_en')
ofa_pipe = pipeline(Tasks.text_summarization, model=model)
text = 'five-time world champion michelle kwan withdrew' + \
'from the #### us figure skating championships on wednesday ,' + \
' but will petition us skating officials for the chance to ' + \
'compete at the #### turin olympics .'
input = {'text': text}
result = ofa_pipe(input)
print(result)
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_run_with_summarization_with_name(self):
ofa_pipe = pipeline(
Tasks.text_summarization,
model='damo/ofa_summarization_gigaword_large_en')
text = 'five-time world champion michelle kwan withdrew' + \
'from the #### us figure skating championships on wednesday ,' + \
' but will petition us skating officials for the chance to ' + \
'compete at the #### turin olympics .'
input = {'text': text}
result = ofa_pipe(input)
print(result)
# test for return multiple sequences
ofa_pipe.model.num_return_sequences = 2
result = ofa_pipe(input)
print(result)
# test batch infer
ofa_pipe.model.num_return_sequences = 1
input = [{'text': text} for _ in range(3)]
results = ofa_pipe(input, batch_size=2)
for r in results:
print(r[OutputKeys.TEXT])
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
def test_run_with_text_classification_with_model(self):
model = Model.from_pretrained(
'damo/ofa_text-classification_mnli_large_en')
ofa_pipe = pipeline(Tasks.text_classification, model=model)
text = 'One of our number will carry out your instructions minutely.'
text2 = 'A member of my team will execute your orders with immense precision.'
result = ofa_pipe((text, text2))
result = ofa_pipe({'text': text, 'text2': text2})
print(result)
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_run_with_text_classification_with_name(self):
ofa_pipe = pipeline(
Tasks.text_classification,
model='damo/ofa_text-classification_mnli_large_en')
text = 'One of our number will carry out your instructions minutely.'
text2 = 'A member of my team will execute your orders with immense precision.'
result = ofa_pipe((text, text2))
print(result)
# test batch infer
inputs = [(text, text2) for _ in range(3)]
results = ofa_pipe(inputs, batch_size=2)
for r in results:
print(r[OutputKeys.LABELS], r[OutputKeys.SCORES])
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
def test_run_with_visual_entailment_with_model(self):
model = Model.from_pretrained(
'damo/ofa_visual-entailment_snli-ve_large_en')
ofa_pipe = pipeline(Tasks.visual_entailment, model=model)
image = 'data/test/images/dogs.jpg'
text = 'there are two birds.'
input = {'image': image, 'text': text}
result = ofa_pipe(input)
print(result)
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_run_with_visual_entailment_with_name(self):
ofa_pipe = pipeline(
Tasks.visual_entailment,
model='damo/ofa_visual-entailment_snli-ve_large_en')
image = 'data/test/images/dogs.jpg'
text = 'there are two birds.'
input = {'image': image, 'text': text}
result = ofa_pipe(input)
print(result)
# test batch infer
input = [{'image': image, 'text': text} for _ in range(3)]
results = ofa_pipe(input, batch_size=2)
for r in results:
print(r[OutputKeys.LABELS], r[OutputKeys.SCORES])
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_run_with_visual_grounding_with_model(self):
model = Model.from_pretrained(
'damo/ofa_visual-grounding_refcoco_large_en')
ofa_pipe = pipeline(Tasks.visual_grounding, model=model)
image = 'data/test/images/visual_grounding.png'
text = 'a blue turtle-like pokemon with round head'
input = {'image': image, 'text': text}
result = ofa_pipe(input)
print(result)
image_name = image.split('/')[-2]
self.save_img(
image,
result[OutputKeys.BOXES][0], # just one box
osp.join('large_en_model_' + image_name + '.png'))
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
def test_run_with_visual_grounding_with_name(self):
ofa_pipe = pipeline(
Tasks.visual_grounding,
model='damo/ofa_visual-grounding_refcoco_large_en')
image = 'data/test/images/visual_grounding.png'
text = 'a blue turtle-like pokemon with round head'
input = {'image': image, 'text': text}
result = ofa_pipe(input)
print(result)
image_name = image.split('/')[-2]
self.save_img(image, result[OutputKeys.BOXES][0],
osp.join('large_en_name_' + image_name + '.png'))
# test batch infer
result = ofa_pipe([input for _ in range(3)], batch_size=2)
print(result)
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_run_with_visual_grounding_zh_with_name(self):
model = 'damo/ofa_visual-grounding_refcoco_large_zh'
ofa_pipe = pipeline(Tasks.visual_grounding, model=model)
image = 'data/test/images/visual_grounding.png'
text = '一个圆头的蓝色宝可梦'
input = {'image': image, 'text': text}
result = ofa_pipe(input)
print(result)
image_name = image.split('/')[-1]
self.save_img(image, result[OutputKeys.BOXES][0],
osp.join('large_zh_name_' + image_name))
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
def test_run_with_visual_question_answering_with_model(self):
model = Model.from_pretrained(
'damo/ofa_visual-question-answering_pretrain_large_en')
ofa_pipe = pipeline(Tasks.visual_question_answering, model=model)
image = 'data/test/images/visual_question_answering.png'
text = 'what is grown on the plant?'
input = {'image': image, 'text': text}
result = ofa_pipe(input)
print(result)
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_run_with_visual_question_answering_with_name(self):
model = 'damo/ofa_visual-question-answering_pretrain_large_en'
ofa_pipe = pipeline(Tasks.visual_question_answering, model=model)
image = 'data/test/images/visual_question_answering.png'
text = 'what is grown on the plant?'
input = {'image': image, 'text': text}
result = ofa_pipe(input)
print(result)
# test batch infer
result = ofa_pipe([input for _ in range(3)], batch_size=2)
print(result)
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
def test_run_with_image_captioning_distilled_with_model(self):
model = Model.from_pretrained(
'damo/ofa_image-caption_coco_distilled_en')
img_captioning = pipeline(
task=Tasks.image_captioning,
model=model,
)
image_path = 'data/test/images/image_captioning.png'
image = Image.open(image_path)
result = img_captioning(image)
print(result[OutputKeys.CAPTION])
# test batch infer
print(img_captioning([image for _ in range(3)], batch_size=2))
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_run_with_visual_entailment_distilled_model_with_name(self):
ofa_pipe = pipeline(
Tasks.visual_entailment,
model='damo/ofa_visual-entailment_snli-ve_distilled_v2_en')
image = 'data/test/images/dogs.jpg'
text = 'there are two birds.'
input = {'image': image, 'text': text}
result = ofa_pipe(input)
print(result)
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
def test_run_with_visual_grounding_distilled_model_with_model(self):
model = Model.from_pretrained(
'damo/ofa_visual-grounding_refcoco_distilled_en')
ofa_pipe = pipeline(Tasks.visual_grounding, model=model)
image = 'data/test/images/visual_grounding.png'
text = 'a blue turtle-like pokemon with round head'
input = {'image': image, 'text': text}
result = ofa_pipe(input)
print(result)
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_run_with_text_to_image_synthesis_with_name(self):
model = 'damo/ofa_text-to-image-synthesis_coco_large_en'
ofa_pipe = pipeline(Tasks.text_to_image_synthesis, model=model)
ofa_pipe.model.generator.beam_size = 2
example = {'text': 'a bear in the water.'}
result = ofa_pipe(example)
result[OutputKeys.OUTPUT_IMGS][0].save('result.png')
print(f'Output written to {osp.abspath("result.png")}')
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
def test_run_with_text_to_image_synthesis_with_model(self):
model = Model.from_pretrained(
'damo/ofa_text-to-image-synthesis_coco_large_en')
ofa_pipe = pipeline(Tasks.text_to_image_synthesis, model=model)
ofa_pipe.model.generator.beam_size = 2
example = {'text': 'a bear in the water.'}
result = ofa_pipe(example)
result[OutputKeys.OUTPUT_IMG].save('result.png')
print(f'Output written to {osp.abspath("result.png")}')
@unittest.skipUnless(
test_level() >= 1,
'skip test in current test level, model has no text2phone_dict.txt')
def test_run_with_asr_with_name(self):
model = 'damo/ofa_mmspeech_pretrain_base_zh'
ofa_pipe = pipeline(Tasks.auto_speech_recognition, model=model)
example = {'wav': 'data/test/audios/asr_example_ofa.wav'}
result = ofa_pipe(example)
print(result[OutputKeys.TEXT])
# test batch infer
result = ofa_pipe([example for _ in range(3)], batch_size=2)
for r in result:
print(r[OutputKeys.TEXT])
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_run_with_sudoku_with_name(self):
model = 'damo/ofa_sudoku_kaggle_large'
ofa_pipe = pipeline(Tasks.sudoku, model=model)
# the valid num is 1-9and use 0 represents the empty block
# the separator of column is ` : `, and the separator of row is ` | `
example = '5 : 3 : 0 : 0 : 7 : 0 : 0 : 0 : 0 | \
6 : 0 : 0 : 1 : 9 : 5 : 0 : 0 : 0 | \
0 : 9 : 8 : 0 : 0 : 0 : 0 : 6 : 0 | \
8 : 0 : 0 : 0 : 6 : 0 : 0 : 0 : 3 | \
4 : 0 : 0 : 8 : 0 : 3 : 0 : 0 : 1 | \
7 : 0 : 0 : 0 : 2 : 0 : 0 : 0 : 6 | \
0 : 6 : 0 : 0 : 0 : 0 : 2 : 8 : 0 | \
0 : 0 : 0 : 4 : 1 : 9 : 0 : 0 : 5 | \
0 : 0 : 0 : 0 : 8 : 0 : 0 : 7 : 9'
result = ofa_pipe(example)
print(result[OutputKeys.TEXT])
# test batch infer
result = ofa_pipe([example for _ in range(3)], batch_size=2)
for r in result:
print(r[OutputKeys.TEXT])
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_run_with_text2sql_with_name(self):
model = 'damo/ofa_text2sql_spider_large_en'
ofa_pipe = pipeline(Tasks.text2sql, model=model)
text = 'Show all book categories and the number of books in each category.'
database = 'culture_company' # optional, default `culture_company`
example = {'text': text, 'database': database}
result = ofa_pipe(example)
print(result[OutputKeys.TEXT])
# test batch infer
result = ofa_pipe([example for _ in range(3)], batch_size=2)
for r in result:
print(r[OutputKeys.TEXT])
if __name__ == '__main__':
unittest.main()