Files
modelscope/tests/pipelines/test_face_recognition.py
2022-07-28 21:52:18 +08:00

43 lines
1.4 KiB
Python

# Copyright (c) Alibaba, Inc. and its affiliates.
import os.path as osp
import tempfile
import unittest
import cv2
import numpy as np
from modelscope.fileio import File
from modelscope.msdatasets import MsDataset
from modelscope.outputs import OutputKeys
from modelscope.pipelines import pipeline
from modelscope.utils.constant import ModelFile, Tasks
from modelscope.utils.test_utils import test_level
class FaceRecognitionTest(unittest.TestCase):
def setUp(self) -> None:
self.recog_model_id = 'damo/cv_ir101_facerecognition_cfglint'
self.det_model_id = 'damo/cv_resnet_facedetection_scrfd10gkps'
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
def test_face_compare(self):
img1 = 'data/test/images/face_recognition_1.png'
img2 = 'data/test/images/face_recognition_2.png'
face_detection = pipeline(
Tasks.face_detection, model=self.det_model_id)
face_recognition = pipeline(
Tasks.face_recognition,
face_detection=face_detection,
model=self.recog_model_id)
# note that for dataset output, the inference-output is a Generator that can be iterated.
emb1 = face_recognition(img1)[OutputKeys.IMG_EMBEDDING]
emb2 = face_recognition(img2)[OutputKeys.IMG_EMBEDDING]
sim = np.dot(emb1[0], emb2[0])
print(f'Cos similarity={sim:.3f}, img1:{img1} img2:{img2}')
if __name__ == '__main__':
unittest.main()