Files
modelscope/modelscope/metainfo.py
2022-07-28 21:52:18 +08:00

196 lines
6.8 KiB
Python

# Copyright (c) Alibaba, Inc. and its affiliates.
class Models(object):
""" Names for different models.
Holds the standard model name to use for identifying different model.
This should be used to register models.
Model name should only contain model info but not task info.
"""
# vision models
scrfd = 'scrfd'
classification_model = 'ClassificationModel'
nafnet = 'nafnet'
csrnet = 'csrnet'
cascade_mask_rcnn_swin = 'cascade_mask_rcnn_swin'
# nlp models
bert = 'bert'
palm = 'palm-v2'
structbert = 'structbert'
veco = 'veco'
translation = 'csanmt-translation'
space = 'space'
tcrf = 'transformer-crf'
# audio models
sambert_hifigan = 'sambert-hifigan'
speech_frcrn_ans_cirm_16k = 'speech_frcrn_ans_cirm_16k'
kws_kwsbp = 'kws-kwsbp'
generic_asr = 'generic-asr'
# multi-modal models
ofa = 'ofa'
clip = 'clip-multi-modal-embedding'
gemm = 'gemm-generative-multi-modal'
mplug = 'mplug'
imagen = 'imagen-text-to-image-synthesis'
video_clip = 'video-clip-multi-modal-embedding'
class TaskModels(object):
# nlp task
text_classification = 'text-classification'
class Heads(object):
# nlp heads
text_classification = 'text-classification'
class Pipelines(object):
""" Names for different pipelines.
Holds the standard pipline name to use for identifying different pipeline.
This should be used to register pipelines.
For pipeline which support different models and implements the common function, we
should use task name for this pipeline.
For pipeline which suuport only one model, we should use ${Model}-${Task} as its name.
"""
# vision tasks
image_matting = 'unet-image-matting'
image_denoise = 'nafnet-image-denoise'
person_image_cartoon = 'unet-person-image-cartoon'
ocr_detection = 'resnet18-ocr-detection'
action_recognition = 'TAdaConv_action-recognition'
animal_recognation = 'resnet101-animal_recog'
cmdssl_video_embedding = 'cmdssl-r2p1d_video_embedding'
face_detection = 'resnet-face-detection-scrfd10gkps'
live_category = 'live-category'
general_image_classification = 'vit-base_image-classification_ImageNet-labels'
daily_image_classification = 'vit-base_image-classification_Dailylife-labels'
image_color_enhance = 'csrnet-image-color-enhance'
virtual_tryon = 'virtual_tryon'
image_colorization = 'unet-image-colorization'
image_super_resolution = 'rrdb-image-super-resolution'
face_image_generation = 'gan-face-image-generation'
style_transfer = 'AAMS-style-transfer'
face_recognition = 'ir101-face-recognition-cfglint'
image_instance_segmentation = 'cascade-mask-rcnn-swin-image-instance-segmentation'
image2image_translation = 'image-to-image-translation'
live_category = 'live-category'
video_category = 'video-category'
# nlp tasks
sentence_similarity = 'sentence-similarity'
word_segmentation = 'word-segmentation'
named_entity_recognition = 'named-entity-recognition'
text_generation = 'text-generation'
sentiment_analysis = 'sentiment-analysis'
sentiment_classification = 'sentiment-classification'
fill_mask = 'fill-mask'
csanmt_translation = 'csanmt-translation'
nli = 'nli'
dialog_intent_prediction = 'dialog-intent-prediction'
dialog_modeling = 'dialog-modeling'
dialog_state_tracking = 'dialog-state-tracking'
zero_shot_classification = 'zero-shot-classification'
# audio tasks
sambert_hifigan_tts = 'sambert-hifigan-tts'
speech_dfsmn_aec_psm_16k = 'speech-dfsmn-aec-psm-16k'
speech_frcrn_ans_cirm_16k = 'speech_frcrn_ans_cirm_16k'
kws_kwsbp = 'kws-kwsbp'
asr_inference = 'asr-inference'
# multi-modal tasks
image_captioning = 'image-captioning'
multi_modal_embedding = 'multi-modal-embedding'
generative_multi_modal_embedding = 'generative-multi-modal-embedding'
visual_question_answering = 'visual-question-answering'
text_to_image_synthesis = 'text-to-image-synthesis'
video_multi_modal_embedding = 'video-multi-modal-embedding'
class Trainers(object):
""" Names for different trainer.
Holds the standard trainer name to use for identifying different trainer.
This should be used to register trainers.
For a general Trainer, you can use easynlp-trainer/ofa-trainer/sofa-trainer.
For a model specific Trainer, you can use ${ModelName}-${Task}-trainer.
"""
default = 'Trainer'
# multi-modal tasks
clip_multi_modal_embedding = 'clip-multi-modal-embedding'
class Preprocessors(object):
""" Names for different preprocessor.
Holds the standard preprocessor name to use for identifying different preprocessor.
This should be used to register preprocessors.
For a general preprocessor, just use the function name as preprocessor name such as
resize-image, random-crop
For a model-specific preprocessor, use ${modelname}-${fuction}
"""
# cv preprocessor
load_image = 'load-image'
image_denoie_preprocessor = 'image-denoise-preprocessor'
image_color_enhance_preprocessor = 'image-color-enhance-preprocessor'
image_instance_segmentation_preprocessor = 'image-instance-segmentation-preprocessor'
# nlp preprocessor
sen_sim_tokenizer = 'sen-sim-tokenizer'
bert_seq_cls_tokenizer = 'bert-seq-cls-tokenizer'
palm_text_gen_tokenizer = 'palm-text-gen-tokenizer'
token_cls_tokenizer = 'token-cls-tokenizer'
ner_tokenizer = 'ner-tokenizer'
nli_tokenizer = 'nli-tokenizer'
sen_cls_tokenizer = 'sen-cls-tokenizer'
dialog_intent_preprocessor = 'dialog-intent-preprocessor'
dialog_modeling_preprocessor = 'dialog-modeling-preprocessor'
dialog_state_tracking_preprocessor = 'dialog-state-tracking-preprocessor'
sbert_token_cls_tokenizer = 'sbert-token-cls-tokenizer'
zero_shot_cls_tokenizer = 'zero-shot-cls-tokenizer'
# audio preprocessor
linear_aec_fbank = 'linear-aec-fbank'
text_to_tacotron_symbols = 'text-to-tacotron-symbols'
wav_to_lists = 'wav-to-lists'
wav_to_scp = 'wav-to-scp'
# multi-modal
ofa_image_caption = 'ofa-image-caption'
mplug_visual_question_answering = 'mplug-visual-question-answering'
class Metrics(object):
""" Names for different metrics.
"""
# accuracy
accuracy = 'accuracy'
# metrics for image denoise task
image_denoise_metric = 'image-denoise-metric'
# metric for image instance segmentation task
image_ins_seg_coco_metric = 'image-ins-seg-coco-metric'
# metrics for sequence classification task
seq_cls_metric = 'seq_cls_metric'
# metrics for token-classification task
token_cls_metric = 'token-cls-metric'
# metrics for text-generation task
text_gen_metric = 'text-gen-metric'
# metrics for image-color-enhance task
image_color_enhance_metric = 'image-color-enhance-metric'