mirror of
https://github.com/modelscope/modelscope.git
synced 2025-12-21 18:49:23 +01:00
1. Abstract keys of dicts needed by nlp metric classes into the init method
2. Add Preprocessor.save_pretrained to save preprocessor information
3. Abstract the config saving function, which can lead to normally saving in the direct call of from_pretrained, and the modification of cfg one by one when training.
4. Remove SbertTokenizer and VecoTokenizer, use transformers' tokenizers instead
5. Use model/preprocessor's from_pretrained in all nlp pipeline classes.
6. Add model_kwargs and preprocessor_kwargs in all nlp pipeline classes
7. Add base classes for fill-mask and text-classification preprocessor, as a demo for later changes
8. Fix user feedback: Re-train the model in continue training scenario
9. Fix user feedback: Too many checkpoint saved
10. Simplify the nlp-trainer
11. Fix user feedback: Split the default trainer's __init__ method, which makes user easier to override
12. Add safe_get to Config class
---------------------------- Another refactor from version 36 -------------------------
13. Name all nlp transformers' preprocessors from TaskNamePreprocessor to TaskNameTransformersPreprocessor, for example:
TextClassificationPreprocessor -> TextClassificationTransformersPreprocessor
14. Add a base class per task for all nlp tasks' preprocessors which has at least two sub-preprocessors
15. Add output classes of nlp models
16. Refactor the logic for token-classification
17. Fix bug: checkpoint_hook does not support pytorch_model.pt
18. Fix bug: Pipeline name does not match with task name, so inference will not succeed after training
NOTE: This is just a stop bleeding solution, the root cause is the uncertainty of the relationship between models and pipelines
Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/10723513
* add save_pretrained to preprocessor
* save preprocessor config in hook
* refactor label-id mapping fetching logic
* test ok on sentence-similarity
* run on finetuning
* fix bug
* pre-commit passed
* fix bug
* Merge branch 'master' into feat/refactor_config
# Conflicts:
# modelscope/preprocessors/nlp/nlp_base.py
* add params to init
* 1. support max ckpt num 2. support ignoring others but bin file in continue training 3. add arguments to some nlp metrics
* Split trainer init impls to overridable methods
* remove some obsolete tokenizers
* unfinished
* support input params in pipeline
* fix bugs
* fix ut bug
* fix bug
* fix ut bug
* fix ut bug
* fix ut bug
* add base class for some preprocessors
* Merge commit '379867739548f394d0fa349ba07afe04adf4c8b6' into feat/refactor_config
* compatible with old code
* fix ut bug
* fix ut bugs
* fix bug
* add some comments
* fix ut bug
* add a requirement
* fix pre-commit
* Merge commit '0451b3d3cb2bebfef92ec2c227b2a3dd8d01dc6a' into feat/refactor_config
* fixbug
* Support function type in registry
* fix ut bug
* fix bug
* Merge commit '5f719e542b963f0d35457e5359df879a5eb80b82' into feat/refactor_config
# Conflicts:
# modelscope/pipelines/nlp/multilingual_word_segmentation_pipeline.py
# modelscope/pipelines/nlp/named_entity_recognition_pipeline.py
# modelscope/pipelines/nlp/word_segmentation_pipeline.py
# modelscope/utils/hub.py
* remove obsolete file
* rename init args
* rename params
* fix merge bug
* add default preprocessor config for ner-model
* move a method a util file
* remove unused config
* Fix a bug in pbar
* bestckptsaver:change default ckpt numbers to 1
* 1. Add assert to max_epoch 2. split init_dist and get_device 3. change cmp func name
* Fix bug
* fix bug
* fix bug
* unfinished refactoring
* unfinished
* uw
* uw
* uw
* uw
* Merge branch 'feat/refactor_config' into feat/refactor_trainer
# Conflicts:
# modelscope/preprocessors/nlp/document_segmentation_preprocessor.py
# modelscope/preprocessors/nlp/faq_question_answering_preprocessor.py
# modelscope/preprocessors/nlp/relation_extraction_preprocessor.py
# modelscope/preprocessors/nlp/text_generation_preprocessor.py
* uw
* uw
* unify nlp task outputs
* uw
* uw
* uw
* uw
* change the order of text cls pipeline
* refactor t5
* refactor tg task preprocessor
* fix
* unfinished
* temp
* refactor code
* unfinished
* unfinished
* unfinished
* unfinished
* uw
* Merge branch 'feat/refactor_config' into feat/refactor_trainer
* smoke test pass
* ut testing
* pre-commit passed
* Merge branch 'master' into feat/refactor_config
# Conflicts:
# modelscope/models/nlp/bert/document_segmentation.py
# modelscope/pipelines/nlp/__init__.py
# modelscope/pipelines/nlp/document_segmentation_pipeline.py
* merge master
* unifnished
* Merge branch 'feat/fix_bug_pipeline_name' into feat/refactor_config
* fix bug
* fix ut bug
* support ner batch inference
* fix ut bug
* fix bug
* support batch inference on three nlp tasks
* unfinished
* fix bug
* fix bug
* Merge branch 'master' into feat/refactor_config
# Conflicts:
# modelscope/models/base/base_model.py
# modelscope/pipelines/nlp/conversational_text_to_sql_pipeline.py
# modelscope/pipelines/nlp/dialog_intent_prediction_pipeline.py
# modelscope/pipelines/nlp/dialog_modeling_pipeline.py
# modelscope/pipelines/nlp/dialog_state_tracking_pipeline.py
# modelscope/pipelines/nlp/document_segmentation_pipeline.py
# modelscope/pipelines/nlp/faq_question_answering_pipeline.py
# modelscope/pipelines/nlp/feature_extraction_pipeline.py
# modelscope/pipelines/nlp/fill_mask_pipeline.py
# modelscope/pipelines/nlp/information_extraction_pipeline.py
# modelscope/pipelines/nlp/named_entity_recognition_pipeline.py
# modelscope/pipelines/nlp/sentence_embedding_pipeline.py
# modelscope/pipelines/nlp/summarization_pipeline.py
# modelscope/pipelines/nlp/table_question_answering_pipeline.py
# modelscope/pipelines/nlp/text2text_generation_pipeline.py
# modelscope/pipelines/nlp/text_classification_pipeline.py
# modelscope/pipelines/nlp/text_error_correction_pipeline.py
# modelscope/pipelines/nlp/text_generation_pipeline.py
# modelscope/pipelines/nlp/text_ranking_pipeline.py
# modelscope/pipelines/nlp/token_classification_pipeline.py
# modelscope/pipelines/nlp/word_segmentation_pipeline.py
# modelscope/pipelines/nlp/zero_shot_classification_pipeline.py
# modelscope/trainers/nlp_trainer.py
* pre-commit passed
* fix bug
* Merge branch 'master' into feat/refactor_config
# Conflicts:
# modelscope/preprocessors/__init__.py
* fix bug
* fix bug
* fix bug
* fix bug
* fix bug
* fixbug
* pre-commit passed
* fix bug
* fixbug
* fix bug
* fix bug
* fix bug
* fix bug
* self review done
* fixbug
* fix bug
* fix bug
* fix bugs
* remove sub-token offset mapping
* fix name bug
* add some tests
* 1. support batch inference of text-generation,text2text-generation,token-classification,text-classification 2. add corresponding UTs
* add old logic back
* tmp save
* add tokenize by words logic back
* move outputs file back
* revert veco token-classification back
* fix typo
* Fix description
* Merge commit '4dd99b8f6e4e7aefe047c68a1bedd95d3ec596d6' into feat/refactor_config
* Merge branch 'master' into feat/refactor_config
# Conflicts:
# modelscope/pipelines/builder.py
73 lines
3.2 KiB
Python
73 lines
3.2 KiB
Python
# Copyright (c) Alibaba, Inc. and its affiliates.
|
||
import unittest
|
||
|
||
from modelscope.hub.snapshot_download import snapshot_download
|
||
from modelscope.models import Model
|
||
from modelscope.models.nlp.task_models.sequence_classification import \
|
||
SequenceClassificationModel
|
||
from modelscope.pipelines import pipeline
|
||
from modelscope.pipelines.nlp import TextClassificationPipeline
|
||
from modelscope.preprocessors import TextClassificationTransformersPreprocessor
|
||
from modelscope.utils.constant import Tasks
|
||
from modelscope.utils.demo_utils import DemoCompatibilityCheck
|
||
from modelscope.utils.test_utils import test_level
|
||
|
||
|
||
class SentimentClassificationTaskModelTest(unittest.TestCase,
|
||
DemoCompatibilityCheck):
|
||
|
||
def setUp(self) -> None:
|
||
self.task = Tasks.text_classification
|
||
self.model_id = 'damo/nlp_structbert_sentiment-classification_chinese-base'
|
||
|
||
sentence1 = '启动的时候很大声音,然后就会听到1.2秒的卡察的声音,类似齿轮摩擦的声音'
|
||
|
||
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
|
||
def test_run_with_direct_file_download(self):
|
||
cache_path = snapshot_download(self.model_id)
|
||
tokenizer = TextClassificationTransformersPreprocessor(cache_path)
|
||
model = SequenceClassificationModel.from_pretrained(
|
||
self.model_id, num_labels=2)
|
||
pipeline1 = TextClassificationPipeline(model, preprocessor=tokenizer)
|
||
pipeline2 = pipeline(
|
||
Tasks.text_classification, model=model, preprocessor=tokenizer)
|
||
print(f'sentence1: {self.sentence1}\n'
|
||
f'pipeline1:{pipeline1(input=self.sentence1)}')
|
||
print(f'sentence1: {self.sentence1}\n'
|
||
f'pipeline1: {pipeline2(input=self.sentence1)}')
|
||
|
||
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
|
||
def test_run_with_model_from_modelhub(self):
|
||
model = Model.from_pretrained(self.model_id)
|
||
tokenizer = TextClassificationTransformersPreprocessor(model.model_dir)
|
||
pipeline_ins = pipeline(
|
||
task=Tasks.text_classification,
|
||
model=model,
|
||
preprocessor=tokenizer)
|
||
print(pipeline_ins(input=self.sentence1))
|
||
self.assertTrue(
|
||
isinstance(pipeline_ins.model, SequenceClassificationModel))
|
||
|
||
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
||
def test_run_with_model_name(self):
|
||
pipeline_ins = pipeline(
|
||
task=Tasks.text_classification, model=self.model_id)
|
||
print(pipeline_ins(input=self.sentence1))
|
||
self.assertTrue(
|
||
isinstance(pipeline_ins.model, SequenceClassificationModel))
|
||
|
||
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
||
def test_run_with_default_model(self):
|
||
pipeline_ins = pipeline(task=Tasks.text_classification)
|
||
print(pipeline_ins(input=self.sentence1))
|
||
self.assertTrue(
|
||
isinstance(pipeline_ins.model, SequenceClassificationModel))
|
||
|
||
@unittest.skip('demo compatibility test is only enabled on a needed-basis')
|
||
def test_demo_compatibility(self):
|
||
self.compatibility_check()
|
||
|
||
|
||
if __name__ == '__main__':
|
||
unittest.main()
|