Files
modelscope/tests/pipelines/test_nli.py
tanfan.zjh 5f0e99996a 新增模型测试用例
新增模型测试用例
1. 多轮对话改写模型:damo/nlp_mt5_dialogue-rewriting_chinese-base
2. 多语言FAQ模型:damo/nlp_faq-question-answering_multilingual-base
3. fact-checking模型:damo/nlp_structbert_fact-checking_chinese-base
4. 电商领域文本相似度模型:damo/nlp_structbert_sentence-similarity_chinese-retail-base

均不涉及sdk更新,仅新增模型

Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/11477190
2023-01-31 10:10:59 +00:00

76 lines
3.4 KiB
Python

# Copyright (c) Alibaba, Inc. and its affiliates.
import unittest
from modelscope.hub.snapshot_download import snapshot_download
from modelscope.models import Model
from modelscope.pipelines import pipeline
from modelscope.pipelines.nlp import TextClassificationPipeline
from modelscope.preprocessors import TextClassificationTransformersPreprocessor
from modelscope.utils.constant import Tasks
from modelscope.utils.demo_utils import DemoCompatibilityCheck
from modelscope.utils.regress_test_utils import IgnoreKeyFn, MsRegressTool
from modelscope.utils.test_utils import test_level
class NLITest(unittest.TestCase, DemoCompatibilityCheck):
def setUp(self) -> None:
self.task = Tasks.nli
self.model_id = 'damo/nlp_structbert_nli_chinese-base'
self.model_id_fact_checking = 'damo/nlp_structbert_fact-checking_chinese-base'
sentence1 = '四川商务职业学院和四川财经职业学院哪个好?'
sentence2 = '四川商务职业学院商务管理在哪个校区?'
regress_tool = MsRegressTool(baseline=False)
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
def test_run_with_direct_file_download(self):
cache_path = snapshot_download(self.model_id)
tokenizer = TextClassificationTransformersPreprocessor(cache_path)
model = Model.from_pretrained(cache_path)
pipeline1 = TextClassificationPipeline(model, preprocessor=tokenizer)
pipeline2 = pipeline(Tasks.nli, model=model, preprocessor=tokenizer)
print(f'sentence1: {self.sentence1}\nsentence2: {self.sentence2}\n'
f'pipeline1:{pipeline1(input=(self.sentence1, self.sentence2))}')
print(
f'sentence1: {self.sentence1}\nsentence2: {self.sentence2}\n'
f'pipeline1: {pipeline2(input=(self.sentence1, self.sentence2))}')
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
def test_run_with_model_from_modelhub(self):
model = Model.from_pretrained(self.model_id)
tokenizer = TextClassificationTransformersPreprocessor(model.model_dir)
pipeline_ins = pipeline(
task=Tasks.nli, model=model, preprocessor=tokenizer)
print(pipeline_ins(input=(self.sentence1, self.sentence2)))
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_run_with_model_name(self):
pipeline_ins = pipeline(task=Tasks.nli, model=self.model_id)
with self.regress_tool.monitor_module_single_forward(
pipeline_ins.model,
'sbert_nli',
compare_fn=IgnoreKeyFn('.*intermediate_act_fn')):
print(pipeline_ins(input=(self.sentence1, self.sentence2)))
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
def test_fact_checking_model(self):
pipeline_ins = pipeline(
task=Tasks.nli,
model=self.model_id_fact_checking,
model_revision='v1.0.1')
print(pipeline_ins(input=(self.sentence1, self.sentence2)))
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
def test_run_with_default_model(self):
pipeline_ins = pipeline(task=Tasks.nli)
print(pipeline_ins(input=(self.sentence1, self.sentence2)))
@unittest.skip('demo compatibility test is only enabled on a needed-basis')
def test_demo_compatibility(self):
self.compatibility_check()
if __name__ == '__main__':
unittest.main()