mirror of
https://github.com/modelscope/modelscope.git
synced 2025-12-16 16:27:45 +01:00
Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/9644184 * fix ditributed training and eval
117 lines
3.3 KiB
Python
117 lines
3.3 KiB
Python
# Copyright (c) Alibaba, Inc. and its affiliates.
|
|
import os
|
|
import shutil
|
|
import tempfile
|
|
import unittest
|
|
|
|
import torch
|
|
from torch import nn
|
|
from torch.utils.data import DataLoader
|
|
|
|
from modelscope.metrics.builder import MetricKeys
|
|
from modelscope.metrics.sequence_classification_metric import \
|
|
SequenceClassificationMetric
|
|
from modelscope.trainers.utils.inference import multi_gpu_test, single_gpu_test
|
|
from modelscope.utils.test_utils import (DistributedTestCase,
|
|
create_dummy_test_dataset, test_level)
|
|
from modelscope.utils.torch_utils import get_dist_info, init_dist
|
|
|
|
dummy_dataset = create_dummy_test_dataset(
|
|
torch.rand((5, )), torch.randint(0, 4, (1, )), 20)
|
|
|
|
|
|
class DummyModel(nn.Module):
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.linear = nn.Linear(5, 4)
|
|
self.bn = nn.BatchNorm1d(4)
|
|
|
|
def forward(self, feat, labels):
|
|
x = self.linear(feat)
|
|
|
|
x = self.bn(x)
|
|
loss = torch.sum(x)
|
|
return dict(logits=x, loss=loss)
|
|
|
|
|
|
def test_func(dist=False):
|
|
dummy_model = DummyModel()
|
|
dataset = dummy_dataset.to_torch_dataset()
|
|
|
|
dummy_loader = DataLoader(
|
|
dataset,
|
|
batch_size=2,
|
|
)
|
|
|
|
metric_class = SequenceClassificationMetric()
|
|
|
|
if dist:
|
|
init_dist(launcher='pytorch')
|
|
|
|
rank, world_size = get_dist_info()
|
|
device = torch.device(f'cuda:{rank}')
|
|
dummy_model.cuda()
|
|
|
|
if world_size > 1:
|
|
from torch.nn.parallel.distributed import DistributedDataParallel
|
|
dummy_model = DistributedDataParallel(
|
|
dummy_model, device_ids=[torch.cuda.current_device()])
|
|
test_func = multi_gpu_test
|
|
else:
|
|
test_func = single_gpu_test
|
|
|
|
metric_results = test_func(
|
|
dummy_model,
|
|
dummy_loader,
|
|
device=device,
|
|
metric_classes=[metric_class])
|
|
|
|
return metric_results
|
|
|
|
|
|
@unittest.skipIf(not torch.cuda.is_available(), 'cuda unittest')
|
|
class SingleGpuTestTest(unittest.TestCase):
|
|
|
|
def setUp(self):
|
|
print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
|
|
self.tmp_dir = tempfile.TemporaryDirectory().name
|
|
if not os.path.exists(self.tmp_dir):
|
|
os.makedirs(self.tmp_dir)
|
|
|
|
def tearDown(self):
|
|
super().tearDown()
|
|
shutil.rmtree(self.tmp_dir)
|
|
|
|
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
|
|
def test_single_gpu_test(self):
|
|
metric_results = test_func()
|
|
self.assertIn(MetricKeys.ACCURACY, metric_results)
|
|
|
|
|
|
@unittest.skipIf(not torch.cuda.is_available()
|
|
or torch.cuda.device_count() <= 1, 'distributed unittest')
|
|
class MultiGpuTestTest(DistributedTestCase):
|
|
|
|
def setUp(self):
|
|
print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
|
|
self.tmp_dir = tempfile.TemporaryDirectory().name
|
|
if not os.path.exists(self.tmp_dir):
|
|
os.makedirs(self.tmp_dir)
|
|
|
|
def tearDown(self):
|
|
super().tearDown()
|
|
shutil.rmtree(self.tmp_dir)
|
|
|
|
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
|
|
def test_multi_gpu_test(self):
|
|
self.start(
|
|
test_func,
|
|
num_gpus=2,
|
|
assert_callback=lambda x: self.assertIn(MetricKeys.ACCURACY, x),
|
|
dist=True)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|