mirror of
https://github.com/modelscope/modelscope.git
synced 2025-12-16 16:27:45 +01:00
Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/9644184 * fix ditributed training and eval
124 lines
4.6 KiB
Python
124 lines
4.6 KiB
Python
# Copyright (c) Alibaba, Inc. and its affiliates.
|
|
import os
|
|
import shutil
|
|
import tempfile
|
|
import unittest
|
|
|
|
from modelscope.hub.snapshot_download import snapshot_download
|
|
from modelscope.metainfo import Metrics
|
|
from modelscope.models.nlp.sequence_classification import \
|
|
SbertForSequenceClassification
|
|
from modelscope.msdatasets import MsDataset
|
|
from modelscope.trainers import build_trainer
|
|
from modelscope.utils.constant import ModelFile
|
|
from modelscope.utils.hub import read_config
|
|
from modelscope.utils.test_utils import test_level
|
|
|
|
|
|
class TestTrainerWithNlp(unittest.TestCase):
|
|
|
|
def setUp(self):
|
|
print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
|
|
self.tmp_dir = tempfile.TemporaryDirectory().name
|
|
if not os.path.exists(self.tmp_dir):
|
|
os.makedirs(self.tmp_dir)
|
|
|
|
self.dataset = MsDataset.load(
|
|
'afqmc_small', namespace='userxiaoming', split='train')
|
|
|
|
def tearDown(self):
|
|
shutil.rmtree(self.tmp_dir)
|
|
super().tearDown()
|
|
|
|
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
|
|
def test_trainer(self):
|
|
model_id = 'damo/nlp_structbert_sentence-similarity_chinese-base'
|
|
kwargs = dict(
|
|
model=model_id,
|
|
train_dataset=self.dataset,
|
|
eval_dataset=self.dataset,
|
|
work_dir=self.tmp_dir,
|
|
model_revision='beta')
|
|
|
|
trainer = build_trainer(default_args=kwargs)
|
|
trainer.train()
|
|
results_files = os.listdir(self.tmp_dir)
|
|
self.assertIn(f'{trainer.timestamp}.log.json', results_files)
|
|
for i in range(10):
|
|
self.assertIn(f'epoch_{i+1}.pth', results_files)
|
|
|
|
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
|
|
def test_trainer_with_backbone_head(self):
|
|
model_id = 'damo/nlp_structbert_sentiment-classification_chinese-base'
|
|
kwargs = dict(
|
|
model=model_id,
|
|
train_dataset=self.dataset,
|
|
eval_dataset=self.dataset,
|
|
work_dir=self.tmp_dir,
|
|
model_revision='beta')
|
|
|
|
trainer = build_trainer(default_args=kwargs)
|
|
trainer.train()
|
|
results_files = os.listdir(self.tmp_dir)
|
|
self.assertIn(f'{trainer.timestamp}.log.json', results_files)
|
|
for i in range(10):
|
|
self.assertIn(f'epoch_{i+1}.pth', results_files)
|
|
|
|
eval_results = trainer.evaluate(
|
|
checkpoint_path=os.path.join(self.tmp_dir, 'epoch_10.pth'))
|
|
self.assertTrue(Metrics.accuracy in eval_results)
|
|
|
|
@unittest.skipUnless(test_level() >= 1, 'skip test in current test level')
|
|
def test_trainer_with_user_defined_config(self):
|
|
model_id = 'damo/nlp_structbert_sentiment-classification_chinese-base'
|
|
cfg = read_config(model_id, revision='beta')
|
|
cfg.train.max_epochs = 20
|
|
cfg.train.work_dir = self.tmp_dir
|
|
cfg_file = os.path.join(self.tmp_dir, 'config.json')
|
|
cfg.dump(cfg_file)
|
|
kwargs = dict(
|
|
model=model_id,
|
|
train_dataset=self.dataset,
|
|
eval_dataset=self.dataset,
|
|
cfg_file=cfg_file,
|
|
model_revision='beta')
|
|
|
|
trainer = build_trainer(default_args=kwargs)
|
|
trainer.train()
|
|
results_files = os.listdir(self.tmp_dir)
|
|
self.assertIn(f'{trainer.timestamp}.log.json', results_files)
|
|
for i in range(20):
|
|
self.assertIn(f'epoch_{i+1}.pth', results_files)
|
|
|
|
eval_results = trainer.evaluate(
|
|
checkpoint_path=os.path.join(self.tmp_dir, 'epoch_10.pth'))
|
|
self.assertTrue(Metrics.accuracy in eval_results)
|
|
|
|
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
|
|
def test_trainer_with_model_and_args(self):
|
|
tmp_dir = tempfile.TemporaryDirectory().name
|
|
if not os.path.exists(tmp_dir):
|
|
os.makedirs(tmp_dir)
|
|
|
|
model_id = 'damo/nlp_structbert_sentence-similarity_chinese-base'
|
|
cache_path = snapshot_download(model_id, revision='beta')
|
|
model = SbertForSequenceClassification.from_pretrained(cache_path)
|
|
kwargs = dict(
|
|
cfg_file=os.path.join(cache_path, ModelFile.CONFIGURATION),
|
|
model=model,
|
|
train_dataset=self.dataset,
|
|
eval_dataset=self.dataset,
|
|
max_epochs=2,
|
|
work_dir=self.tmp_dir)
|
|
|
|
trainer = build_trainer(default_args=kwargs)
|
|
trainer.train()
|
|
results_files = os.listdir(self.tmp_dir)
|
|
self.assertIn(f'{trainer.timestamp}.log.json', results_files)
|
|
for i in range(2):
|
|
self.assertIn(f'epoch_{i+1}.pth', results_files)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|