Files
modelscope/tests/trainers/hooks/test_optimizer_hook.py
2022-08-16 12:04:07 +08:00

181 lines
6.2 KiB
Python

# Copyright (c) Alibaba, Inc. and its affiliates.
import os
import shutil
import tempfile
import unittest
import json
import numpy as np
import torch
from torch import nn
from torch.optim import SGD
from torch.optim.lr_scheduler import MultiStepLR
from modelscope.metainfo import Trainers
from modelscope.trainers import build_trainer
from modelscope.utils.constant import ModelFile, TrainerStages
from modelscope.utils.test_utils import create_dummy_test_dataset
dummy_dataset = create_dummy_test_dataset(
np.random.random(size=(2, )), np.random.randint(0, 2, (1, )), 10)
class DummyModel(nn.Module):
def __init__(self):
super().__init__()
self.linear = nn.Linear(2, 2)
self.bn = nn.BatchNorm1d(2)
def forward(self, feat, labels):
x = self.linear(feat)
x = self.bn(x)
loss = torch.sum(x)
return dict(logits=x, loss=loss)
class OptimizerHookTest(unittest.TestCase):
def setUp(self):
print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
self.tmp_dir = tempfile.TemporaryDirectory().name
if not os.path.exists(self.tmp_dir):
os.makedirs(self.tmp_dir)
def tearDown(self):
super().tearDown()
shutil.rmtree(self.tmp_dir)
def test_optimizer_hook(self):
json_cfg = {
'task': 'image_classification',
'train': {
'work_dir': self.tmp_dir,
'dataloader': {
'batch_size_per_gpu': 2,
'workers_per_gpu': 1
}
}
}
config_path = os.path.join(self.tmp_dir, ModelFile.CONFIGURATION)
with open(config_path, 'w') as f:
json.dump(json_cfg, f)
model = DummyModel()
optimizer = SGD(model.parameters(), lr=0.01)
lr_scheduler = MultiStepLR(optimizer, milestones=[1, 2])
trainer_name = Trainers.default
kwargs = dict(
cfg_file=config_path,
model=model,
train_dataset=dummy_dataset,
optimizers=(optimizer, lr_scheduler),
max_epochs=2,
device='cpu')
trainer = build_trainer(trainer_name, kwargs)
train_dataloader = trainer._build_dataloader_with_dataset(
trainer.train_dataset, **trainer.cfg.train.get('dataloader', {}))
trainer.register_optimizers_hook()
trainer.invoke_hook(TrainerStages.before_run)
for _ in range(trainer._epoch, trainer._max_epochs):
trainer.invoke_hook(TrainerStages.before_train_epoch)
for _, data_batch in enumerate(train_dataloader):
trainer.invoke_hook(TrainerStages.before_train_iter)
trainer.train_step(trainer.model, data_batch)
trainer.invoke_hook(TrainerStages.after_train_iter)
self.assertEqual(
len(trainer.optimizer.param_groups[0]['params']), 4)
for i in range(4):
self.assertTrue(trainer.optimizer.param_groups[0]['params']
[i].requires_grad)
trainer.invoke_hook(TrainerStages.after_train_epoch)
trainer._epoch += 1
trainer.invoke_hook(TrainerStages.after_run)
class TorchAMPOptimizerHookTest(unittest.TestCase):
def setUp(self):
print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
self.tmp_dir = tempfile.TemporaryDirectory().name
if not os.path.exists(self.tmp_dir):
os.makedirs(self.tmp_dir)
def tearDown(self):
super().tearDown()
shutil.rmtree(self.tmp_dir)
@unittest.skipIf(not torch.cuda.is_available(),
'skip this test when cuda is not available')
def test_amp_optimizer_hook(self):
json_cfg = {
'task': 'image_classification',
'train': {
'work_dir': self.tmp_dir,
'dataloader': {
'batch_size_per_gpu': 2,
'workers_per_gpu': 1
}
}
}
config_path = os.path.join(self.tmp_dir, ModelFile.CONFIGURATION)
with open(config_path, 'w') as f:
json.dump(json_cfg, f)
model = DummyModel().cuda()
optimizer = SGD(model.parameters(), lr=0.01)
lr_scheduler = MultiStepLR(optimizer, milestones=[1, 2])
trainer_name = Trainers.default
kwargs = dict(
cfg_file=config_path,
model=model,
train_dataset=dummy_dataset,
optimizers=(optimizer, lr_scheduler),
max_epochs=2,
use_fp16=True)
trainer = build_trainer(trainer_name, kwargs)
train_dataloader = trainer._build_dataloader_with_dataset(
trainer.train_dataset, **trainer.cfg.train.get('dataloader', {}))
trainer.register_optimizers_hook()
trainer.invoke_hook(TrainerStages.before_run)
for _ in range(trainer._epoch, trainer._max_epochs):
trainer.invoke_hook(TrainerStages.before_train_epoch)
for _, data_batch in enumerate(train_dataloader):
for k, v in data_batch.items():
data_batch[k] = v.cuda()
trainer.invoke_hook(TrainerStages.before_train_iter)
trainer.train_step(trainer.model, data_batch)
trainer.invoke_hook(TrainerStages.after_train_iter)
self.assertEqual(trainer.train_outputs['logits'].dtype,
torch.float16)
# test if `after_train_iter`, whether the model is reset to fp32
trainer.train_step(trainer.model, data_batch)
self.assertEqual(trainer.train_outputs['logits'].dtype,
torch.float32)
self.assertEqual(
len(trainer.optimizer.param_groups[0]['params']), 4)
for i in range(4):
self.assertTrue(trainer.optimizer.param_groups[0]['params']
[i].requires_grad)
trainer.invoke_hook(TrainerStages.after_train_epoch)
trainer._epoch += 1
trainer.invoke_hook(TrainerStages.after_run)
if __name__ == '__main__':
unittest.main()