mirror of
https://github.com/modelscope/modelscope.git
synced 2025-12-16 16:27:45 +01:00
Link: https://code.alibaba-inc.com/Ali-MaaS/MaaS-lib/codereview/9644184 * fix ditributed training and eval
117 lines
3.1 KiB
Python
117 lines
3.1 KiB
Python
# Copyright (c) Alibaba, Inc. and its affiliates.
|
|
import os
|
|
import shutil
|
|
import tempfile
|
|
import unittest
|
|
|
|
import json
|
|
import numpy as np
|
|
import torch
|
|
from torch import nn
|
|
|
|
from modelscope.metainfo import Trainers
|
|
from modelscope.metrics.builder import METRICS, MetricKeys
|
|
from modelscope.trainers import build_trainer
|
|
from modelscope.utils.constant import ModelFile
|
|
from modelscope.utils.registry import default_group
|
|
from modelscope.utils.test_utils import create_dummy_test_dataset
|
|
|
|
|
|
def create_dummy_metric():
|
|
|
|
@METRICS.register_module(
|
|
group_key=default_group, module_name='DummyMetric', force=True)
|
|
class DummyMetric:
|
|
|
|
def add(*args, **kwargs):
|
|
pass
|
|
|
|
def evaluate(self):
|
|
return {MetricKeys.ACCURACY: 0.5}
|
|
|
|
|
|
dummy_dataset = create_dummy_test_dataset(
|
|
np.random.random(size=(5, )), np.random.randint(0, 4, (1, )), 20)
|
|
|
|
|
|
class DummyModel(nn.Module):
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.linear = nn.Linear(5, 4)
|
|
self.bn = nn.BatchNorm1d(4)
|
|
|
|
def forward(self, feat, labels):
|
|
x = self.linear(feat)
|
|
|
|
x = self.bn(x)
|
|
loss = torch.sum(x)
|
|
return dict(logits=x, loss=loss)
|
|
|
|
|
|
class EvaluationHookTest(unittest.TestCase):
|
|
|
|
def setUp(self):
|
|
print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
|
|
self.tmp_dir = tempfile.TemporaryDirectory().name
|
|
if not os.path.exists(self.tmp_dir):
|
|
os.makedirs(self.tmp_dir)
|
|
create_dummy_metric()
|
|
|
|
def tearDown(self):
|
|
super().tearDown()
|
|
shutil.rmtree(self.tmp_dir)
|
|
|
|
def test_evaluation_hook(self):
|
|
json_cfg = {
|
|
'task': 'image_classification',
|
|
'train': {
|
|
'work_dir': self.tmp_dir,
|
|
'dataloader': {
|
|
'batch_size_per_gpu': 2,
|
|
'workers_per_gpu': 1
|
|
},
|
|
'optimizer': {
|
|
'type': 'SGD',
|
|
'lr': 0.01,
|
|
},
|
|
'lr_scheduler': {
|
|
'type': 'StepLR',
|
|
'step_size': 2,
|
|
},
|
|
'hooks': [{
|
|
'type': 'EvaluationHook',
|
|
'interval': 1,
|
|
}]
|
|
},
|
|
'evaluation': {
|
|
'dataloader': {
|
|
'batch_size_per_gpu': 2,
|
|
'workers_per_gpu': 1,
|
|
'shuffle': False
|
|
},
|
|
'metrics': ['DummyMetric']
|
|
}
|
|
}
|
|
|
|
config_path = os.path.join(self.tmp_dir, ModelFile.CONFIGURATION)
|
|
with open(config_path, 'w') as f:
|
|
json.dump(json_cfg, f)
|
|
|
|
trainer_name = Trainers.default
|
|
kwargs = dict(
|
|
cfg_file=config_path,
|
|
model=DummyModel(),
|
|
data_collator=None,
|
|
train_dataset=dummy_dataset,
|
|
eval_dataset=dummy_dataset,
|
|
max_epochs=1)
|
|
|
|
trainer = build_trainer(trainer_name, kwargs)
|
|
trainer.train()
|
|
self.assertDictEqual(trainer.metric_values, {'accuracy': 0.5})
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|