mirror of
https://github.com/modelscope/modelscope.git
synced 2025-12-23 19:49:24 +01:00
* 修复了zip文件不同打包模式下返回路径错误问题。 * 修复了替换了数据集文件重新下载时校验失败问题。 * 修复dataset oss文件在 REUSE 模式下重复下载的问题。 * 修复了csv数据集的meta json文件中某个split的meta和file字段都为''时加载所有split失败的问题。 * 修复了不同版本datasets路径不一致的问题。
137 lines
4.9 KiB
Python
137 lines
4.9 KiB
Python
# Copyright (c) Alibaba, Inc. and its affiliates.
|
|
import os
|
|
import shutil
|
|
import tempfile
|
|
import unittest
|
|
import zipfile
|
|
from functools import partial
|
|
|
|
from modelscope.hub.snapshot_download import snapshot_download
|
|
from modelscope.metainfo import Trainers
|
|
from modelscope.models.cv.image_instance_segmentation import \
|
|
CascadeMaskRCNNSwinModel
|
|
from modelscope.msdatasets import MsDataset
|
|
from modelscope.msdatasets.task_datasets import \
|
|
ImageInstanceSegmentationCocoDataset
|
|
from modelscope.trainers import build_trainer
|
|
from modelscope.utils.config import Config, ConfigDict
|
|
from modelscope.utils.constant import ModelFile
|
|
from modelscope.utils.test_utils import test_level
|
|
|
|
|
|
class TestImageInstanceSegmentationTrainer(unittest.TestCase):
|
|
|
|
model_id = 'damo/cv_swin-b_image-instance-segmentation_coco'
|
|
|
|
def setUp(self):
|
|
print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
|
|
|
|
cache_path = snapshot_download(self.model_id)
|
|
config_path = os.path.join(cache_path, ModelFile.CONFIGURATION)
|
|
cfg = Config.from_file(config_path)
|
|
|
|
max_epochs = cfg.train.max_epochs
|
|
samples_per_gpu = cfg.train.dataloader.batch_size_per_gpu
|
|
try:
|
|
train_data_cfg = cfg.dataset.train
|
|
val_data_cfg = cfg.dataset.val
|
|
except Exception:
|
|
train_data_cfg = None
|
|
val_data_cfg = None
|
|
if train_data_cfg is None:
|
|
# use default toy data
|
|
train_data_cfg = ConfigDict(
|
|
name='pets_small',
|
|
split='train',
|
|
classes=('Cat', 'Dog'),
|
|
folder_name='Pets',
|
|
test_mode=False)
|
|
if val_data_cfg is None:
|
|
val_data_cfg = ConfigDict(
|
|
name='pets_small',
|
|
split='validation',
|
|
classes=('Cat', 'Dog'),
|
|
folder_name='Pets',
|
|
test_mode=True)
|
|
|
|
self.train_dataset = MsDataset.load(
|
|
dataset_name=train_data_cfg.name,
|
|
split=train_data_cfg.split,
|
|
classes=train_data_cfg.classes,
|
|
folder_name=train_data_cfg.folder_name,
|
|
test_mode=train_data_cfg.test_mode)
|
|
assert self.train_dataset.config_kwargs[
|
|
'classes'] == train_data_cfg.classes
|
|
assert next(
|
|
iter(self.train_dataset.config_kwargs['split_config'].values()))
|
|
|
|
self.eval_dataset = MsDataset.load(
|
|
dataset_name=val_data_cfg.name,
|
|
split=val_data_cfg.split,
|
|
classes=val_data_cfg.classes,
|
|
folder_name=val_data_cfg.folder_name,
|
|
test_mode=val_data_cfg.test_mode)
|
|
assert self.eval_dataset.config_kwargs[
|
|
'classes'] == val_data_cfg.classes
|
|
assert next(
|
|
iter(self.eval_dataset.config_kwargs['split_config'].values()))
|
|
|
|
from mmcv.parallel import collate
|
|
|
|
self.collate_fn = partial(collate, samples_per_gpu=samples_per_gpu)
|
|
|
|
self.max_epochs = max_epochs
|
|
|
|
self.tmp_dir = tempfile.TemporaryDirectory().name
|
|
if not os.path.exists(self.tmp_dir):
|
|
os.makedirs(self.tmp_dir)
|
|
|
|
def tearDown(self):
|
|
shutil.rmtree(self.tmp_dir)
|
|
super().tearDown()
|
|
|
|
@unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
|
|
def test_trainer(self):
|
|
kwargs = dict(
|
|
model=self.model_id,
|
|
data_collator=self.collate_fn,
|
|
train_dataset=self.train_dataset,
|
|
eval_dataset=self.eval_dataset,
|
|
work_dir=self.tmp_dir)
|
|
|
|
trainer = build_trainer(
|
|
name=Trainers.image_instance_segmentation, default_args=kwargs)
|
|
trainer.train()
|
|
results_files = os.listdir(self.tmp_dir)
|
|
self.assertIn(f'{trainer.timestamp}.log.json', results_files)
|
|
for i in range(self.max_epochs):
|
|
self.assertIn(f'epoch_{i+1}.pth', results_files)
|
|
|
|
@unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
|
|
def test_trainer_with_model_and_args(self):
|
|
tmp_dir = tempfile.TemporaryDirectory().name
|
|
if not os.path.exists(tmp_dir):
|
|
os.makedirs(tmp_dir)
|
|
|
|
cache_path = snapshot_download(self.model_id)
|
|
model = CascadeMaskRCNNSwinModel.from_pretrained(cache_path)
|
|
kwargs = dict(
|
|
cfg_file=os.path.join(cache_path, ModelFile.CONFIGURATION),
|
|
model=model,
|
|
data_collator=self.collate_fn,
|
|
train_dataset=self.train_dataset,
|
|
eval_dataset=self.eval_dataset,
|
|
work_dir=self.tmp_dir)
|
|
|
|
trainer = build_trainer(
|
|
name=Trainers.image_instance_segmentation, default_args=kwargs)
|
|
trainer.train()
|
|
results_files = os.listdir(self.tmp_dir)
|
|
self.assertIn(f'{trainer.timestamp}.log.json', results_files)
|
|
for i in range(self.max_epochs):
|
|
self.assertIn(f'epoch_{i+1}.pth', results_files)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|